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Knowledge Representation-Oriented Nets
for Discrete Event System Applications

Pedro R. Muro-Medrano, JesA. Bdaiares, and JésLuis Villarroel

Abstract— This paper presents knowledge representation- colored Petri nets or predicate/transition nets) which provide
oriented nets (KRON), a knowledge representation schema more compact and manageable descriptions.

for discrete event systems (DES's). KRON enables the ge\arg) researchers have established that the high-level Petri
representation and use of a variety of knowledge about a DES

static structure and its dynamic states and behavior. It is based N€t formalism is still lacking in two main aspects.
on the integration of high-level Petri nets with frame-based 1) Methodological aspectsSeveral methodologies can be
representation techniques and follows the object-oriented adopted during the system model design process using

paradigm. The main objective considered in its definition is - . . .
to obtain a comprehensive and powerful representation model high-level Petri nets. However, this formalism lacks

for data and control of DES's. The use of the DES behavioral appropriate features to explicitly support concepts from
knowledge is governed by a control mechanism stored in a modern systems engineering such as modularity, encap-
separate inference engine. KRON provides an efficient execution sulation, top-down and bottom-up designs, data abstrac-

mechanism to make the models evolve. This is an adaptation of
the RETE matching algorithm in order to deal with the features
provided by high-level Petri nets and it takes advantage of its

tion, specialization, and inheritance.
2) Data representation aspecti the majority of practical

integration with a frame/object-oriented representation schema. applications, it is necessary to describe aspects that are
Moreover, KRON facilitates dealing with decision points in not related to the system dynamics. Moreover, HLPN’s
the execution of nondeterministic models. A prototype of a are not powerful enough to describe complex systems

simulation tool with graphical display and animation facilities . . . .
has been implemented for KRON and it has been used in several (such as information or manufacturing systems), which

case studies in the manufacturing systems domain. are characterized by having many different attributes
and services and complex relations between elements.
To conclude, Petri nets are good process-oriented for-
malisms, but they are not data-oriented.

T HIS paper deals with a knowledge representation schemar, o4 with these deficiencies, the main approach adopted
for discrete event syste@DES) models. DES's are dy- hai1 been the integration of the high-level Petri net formalism

namic systems that change their state at the OCCUITENCE&, B, other data representation paradigms such as abstract data
discrete events. In general, the stat®®&S modelfas logical

. ) types, object-oriented concepts, or entity relationship models.
cn>1r SerbOI'l;:’ :jatherribth;r;n n:r?]i”fr?l ri\/allu ttesr,mandl thce: ?r\]/elnﬁ/ﬁ)ere are many integrated models in technical literature, which
Dl?é’g Z?e cimSigedeof eIemOentlsJ theatceat/ol\e/e CS(’)rEc]ljrre?ntlyp 6%3 analyzed in Section |1 of this paper. |t can be established

. MUY A%t there has been a global evolution in integration strategies.
asynchronously. The elements of a DES interact with o

o . ) . This evolution leads to a fully integration of Petri nets and
other by means of synchronization and information passing. . : )
mechanisms objects. The proposed integration model follows this last

. . aPproach.
There are several formalisms used to build models or_ : . . . .
: ) . is paper is devoted to illustrate the main features involve
complex DES including those based @etri nets calculus . K led ati iented nets (KRON). T .
of communicating systegsndcommunicating sequential pro-In Knowledge representation-oriented nets ( )- WO main
grt?éecnves were considered in its definition: 1) to obtain an

cessesPetri nets have been recognized as a suitable me .
to describe such complex DES. They allow formal analysigvera" and powerful representation model for data and control
pd 2) to incorporate appropriate features in order to facilitate

graphic representation, and the execution of the system modd] hodological
[2]. Additionally, it is possible to fill the gap between themetho ologica aspects. , ) ) .
RON is based on the integration of high-level Petri nets

system modeling and implementation phases by means q X i . :
automatic code generation techniques [3]. However, the l}ggh the frame/object-oriented paradigm. KRON increases the

of ordinary Petri nets in the modeling of large complex DES€atures generally supported by object and frame-oriented

can lead to models of unmanageable size. This drawbackdgguages in the following ways.

reduced by using high-level Petri nets (HLPN's) [4] (e.g., * It provides a set of semantic constructs implementing the
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* KRON effectively represents this behavior in a declaradifferent structuring tools are proposed with this purpose. Pos-

tive rather than procedural form.

terior proposals extending HLPN’s with structuring constructs

« It provides an interpreter of the underlying HLPN, whictcan be found in [6] and [7].
is based on an efficient matching tool that makes effective The presentation of the most representative works on in-

use of the underlying data structures.

tegration with algebraic specifications (second group) can be

The paper is organized as follows. First, a brief surveyriefly summarized as follows.

of similar approaches is presented in Section Il. Section Ill «
presents the KRON constructs that support the HLPN for-
malism. Section IV introduces the mechanism to support the
connection of dynamic entities. The execution model, which
is supported by the HLPN underlying the model, is presented
in Section V (KRON could be seen as a language that al-
lows the implementation of the HLPN formalism). Section VI
illustrates some modeling restrictions to be considered in
order to make a correct implementation. Section VII shows
the KRON development environment used to create KRON
models facilitated by graphical and animation capabilities.
Finally, conclusions and future works are presented. .

Il. PETRI NET INTEGRATED MODELS

A Petri net is a graph with two kinds of nodeglaces
and transitions which represent respectively conditions and
actions. Tokens evolving through the places complete the
state representation. On the other hand, the execution of
a particular activity generally requires the satisfaction of
some preconditions in the system state; whereas the activity
execution implies additional postconditions in the system state.
In a Petri net, preconditions are specified by those arcs going
from places to transitions whereas postconditions are specified
by arcs going from transitions to places. Transitions whose
preconditions are satisfied are enabled and may be fired. A
transition firing implies removing the enabling tokens from
their previous places, and putting tokens in posterior places.

A high-level Petri net is a Petri net whose tokens carry *
information that may be represented by data structures. In a
HLPN, arcs representing preconditions are labeled by expres-
sions which identify states defined by the value of tokens;
arcs representing postconditions are labeled by expressions
which define state changes by means of the modification of the
value of tokens. In this way, HLPN'’s provide a more concise
behavior representation than ordinary Petri nets.

Many integrations of Petri nets with different paradigms can
be found in technical literature. These may be split into three
main groups:

1) extension of Petri nets with primitives to support

Algebraic nets [8], many-sorted high-level nets [9], and
Petri nets with structured tokens [10] are a result of
the integration of HLPN’s (used to describe the control
structure of the system) and algebraic specifications (used
to describe the data structure). The main objective is to
expand the net formalism with an explicit abstraction
mechanism and a description formalism used for the
data structures. Algebraic specifications provide a suitable
formalism for data representation which is independent of
a concrete programming language. However, there is no
much emphasis on the methodological aspects.

OBJSA nets [11] are also based on algebraic speci-
fications and introduce modularity in Petri nets. The
objective is to allow data abstraction and introduce net
modularity. The algebraic Petri net is constructed over
the OBJ2 abstract data type language. The formalism is
increased by means of a building methodology based on
transition synchronization. However, the modeling power
is affected by the restriction of net model snperposed
automata netsThis model has been revised in [12] in
order to introduce object orientation and inheritance. In
the same way, PrE-nets with algebraic specifications [13]
(SEmiGrAphical Specification language, or SEGRAS),
which were defined before algebraic nets, were formalized
introducing modularity into Petri nets. However, the mod-
eling power is also affected by the restriction on PrE-nets
[14], which only allows single individual objects.

These previous works have been the basis of many others,
most of them considering object-oriented aspects. Concur-
rent object-oriented Petri nets (CO-OPN) defined in [15]
are an example of that work. The CO-OPN formalism
extends algebraic nets with modular features, which are
carried out by introducing parameterized transitions (in
order to cope with data transmission) and synchronization
mechanisms. A system is composed of objects, whose
behavior is defined by an algebraic net, that communicate
by transition synchronization. In CO-OPN, a method is an
externally visible transition in opposition to the internal
transition describing internal behavior.

methodological aspects (modularity, top-down and Previous approaches are based on algebraic specifications.

bottom-up design); We consider that approaches based on a frame/object approach
2) integration of Petri nets with algebraic specifications; can be closer to human conceptual thinking than the ones based
3) integration of Petri nets with the frame/object paradignen algebraic specifications. What is required is a conceptual

Several workshops about the integration of Petri nets aRwdel which will enable engineers and computer scientists to
objects are held regularly as part of prestigious internatiorf#scribe domain concepts in a more intuitive way, and which
conferences; this is proof of the growing interest in this topi€hay also be understandable by users.

One HLPN extension belonging to the first group is called * In [16], the authors emphasize that the current Petri net
hierarchical colored Petri net (HCPN). HCPN's [5] provide  formalism does not support a real data-oriented view of
a set of constructs to support modularity aspects. The idea the system. Based on that, a new augmented model is
behind HCPN's is to allow the construction of a large model proposed: object-oriented net (OONET) which combines
by combining a number of small HLPN's into a larger net, and  an object-oriented data model, called L2, with high-level



MURO-MEDRANO et al.: KNOWLEDGE REPRESENTATION-ORIENTED NETS 185

Petri nets. The object-oriented paradigm is consider@ttegration of Petri nets and objects. As has been pointed out
in data descriptions, but not in modeling the contrah [28], there are two approaches to the integration of Petri
structure. Thus, rule enabling depends on the presemeds and object-oriented concepts: objects inside Petri nets
of tokens (and their time-stamps), but not on the value wérsus Petri nets inside objects. However, the approach based
the tokens. Objects are considered to be passive witham the integration of objects inside Petri nets (e.g., object Petri
message passing. With the same goal of increasing thets) has evolved to incorporate also the second one. Most of
data modeling power, in [17] high-level Petri nets arthe previous approaches concentrate on providing structuring
integrated with the entity—relationship model to obtain thols in compliance with software engineering principles, by
EER formalism. This model is revised in [18] incorporatenforcing constraints that may result in a loss of freedom
ing object-oriented concepts to increase expressivenessind flexibility. Most of them also extend the formalism of
data modeling. However, this approach is not extendétLPN’s. However, there is a great scope for further work
to the process structure in order to provide an overall tailoring analysis techniques to extended HLPN’s. The
modeling framework. Finally, a second revision is donmtegration model presented in this paper provides a full
in [19]. In this last piece of work the internal behavior ointegration of HLPN'’s and the object model, and it does not
each object is described by means of a Petri net (O-netxtend the HLPN formalism.

To obtain the global process structure partial nets are

synchronized by another Petri net, the P-net. This P-net . KRON CONSTRUCTS

is not included in the object structure.

« Hierarchical object-oriented design (HOOD) nets [20 Knowledge representation of DES’s must involve the repre-

[21] integrate HOOD with Petri nets. The result is a mods entation of information related to its dynamic behavior as well

S . : . s more static information. From a conceptual point of view,
which is control-oriented. The object-oriented methodof; . . .
. . he representation of a KRON model is based on semantic net-
ogy is not fully extended to data modeling.

. Object Petri nets (PNO), which have been widely referre"&orks’ whereas a frame implementation perspective has been

to in technical literature, were defined in [22] as hlghéldOptmj for |ts'programm|ng. In this programming context,

. . .- Y the representation is structured around a set of conceptual
level Petri nets with data structures. Their objective is to . . . : . .
. . L entities with associated descriptions and interconnected by
incorporate the data modeling and updating into the nét

model by means of frame-like data structures. In the ﬁr\S/%mous, kinds of associative links. However, in frame-based

. ; . representations, little attention has been paid to describing the
version, few methodological aspects were considered in_ "=~ . . . . )
cloordlnatlon between objects in order to achieve collective

\t,csrfvier:atlzgilsae(;nogfpdﬁgn?é Sts)rtlggeZOEr; tglsséfetvrcg:%ehavior. The application of frame/object-based languages
' brop %o the modeling of complex dynamic systems, has certain

engineering methodology that integrates PNO with theconveniences due to the lack of a formalism to specify its

HOOD methodolggy. In [24]. tW(.) more extensmns'to I:)'\Idcji;ynamic behavior (concerning both, the states of the objects
were introduced: communicative and cooperative nets. : . )
anhd the causal relationships between states and actions).

They enable the modeling of a system as a collection 0 In addition to the programming features supported by

nets that encapsulate their behavior while interacting t?y . . ;
) . me/object-oriented languages, our knowledge representation
means of message sending and the client/server protocal,

Although a primary motivation for Sibertin’s introduction>C o & includes a set of primitives implementing a high-

PNO was to integrate the information model with Petrllevel Petri net based formalism. Fig. 1 illustrates the frame

nets (where data have an effect on behavior), most of tHlerarchy that provides the conceptual entities that support the

€ . .

subsequent work on PNO has focused on the behavio(!:.gpstructlon O.f KRON ”?Ode's- The KRON hierarchy can be
o e€composed into three important groups.

aspects rather than on structural representation issues. ) ] o

. Reference [25] presents PROTOB, an object-orientedl) Net objects Dynamic entities in KRON are descen-
language and methodology based on PROT nets [26]. dants qf a s_peuallzed pbject callelg{namm o.bject. A
In this object-oriented approach, objects communicate by dynamic objgct ce_ntrahzes all the information .reilated
message passing and a hierarchical object decomposition t© @ dynamic entity (abstract or real), and it is the
like HOOD is allowed. However neither inheritance nor ~ epository of information about the entity states and
data representation aspects are considered. activities. The behavioral description of dynamic

« LOOPN++ [27] has mainly been used to describe network object class is represented by a HLPN. The state will

protocols. LOOPN is a textual language that supports P& mapped in a combination of HLPN places and
object-oriented structuring into HLPN's. The language structured tokens, whereas the activities that produce

has a formal semantics which makes it possible to trans- ~ State changes will be mapped in HLPN transitions. The
form object Petri nets (OP-nets) into the simpler HLPN ~ Cconstitutive elements of the structure of a HLPN are
formalism. However, as it has been pointed out by the represented by individual concepts and dedicated ob-

author, there is not a precise relation between OP-nets J€Ct slots {ransitions, activity slots, andstate slots),
and the LOOPN++ language. which are aggregated or composeddynamic objects
As the reader can see, there are many integrated models. to represent the following behavior.
It can be established as a conclusion that all these integration ¢ The state of alynamic entity is represented by a
works have evolved in the same direction to obtain a full set of state slots. To eachstate slot corresponds
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a single place of the HLPN. State information in a
HLPN is represented by its marking, this means the
places and the tokens located in the places. Tokens
which evolve by a HLPN are not mapped onto S
specialized objects in KRON. Any entity evolving HISICAL-ENTITY
throughstate slots plays the role of aoken [PoncEeT
e Activities producing state changes indynamic
object are represented hyansitions, and they are

ET-OBJECT-

ELATION: ELATION-OBJECT

equivalent to the transitions of a HLPWransitions TaTe st et i
« e, . PECIFICATION——ORDER
that represent activities related to the satyeamic s swomo
. . . « . 'VNCHRONIZATION:
object are located in itsactivity slots . The ORMAL-SVNCHRO

interface of a KRON dynamic object is a subset
of activity slots that holdtransitions representing
activities that must be carried out in cooperatiofig. 1. KRON hierarchy.
with other dynamic objects (see Section IV). In
this way,transitions also provide information about
the set of applicable services for the current state.

particularcontrol policy. Conflicts may also be related
in order to provide them with eontrol policy. Conflicts

Finally, HLPN’s of dynamic objects themselves can be enable us to establish a simple interface between the
aggregated to create more complex nets in a high-level model and a decision making system.

structure callednodel, which describes the collective The interpretation of anodel is carried out by the
behavior. control-mechanism, which applies the corresponding
Relations Relations hold the information of interde- control-policy to eachconflict located in themodel.

pendent KRON objects. KRON allows the definition The rest of this section is devoted to provide more details
of relations as an important concept at the same levebout state and activity representations. Some issues about
as classes or objects. Generic relations are defineddysamic object classes, instances, and inheritance will be
a specialization ofelation-object. When a relation is described in the following sections.

defined between two classes, a slot is created in the first

class with the name of the relation, and another slot is

created in the second class with the name of the inverae State Representation

relation. Demons attached to these slots are responsibl

. . . . . ¥ order to illustrate the representation schema used to
for making automatic updatings of direct-inverse relad

. ; : . esign dynamic objects, let us focus on a representative
t|ons: From the HI.‘PN. point of.V|ew,. relations makeentity from a manufacturing system application which is called
possible the comblpat|on of objects in more COmpleﬁansformation—resource #21. This object holds the
datal structureg_ wh|ch represent tokens. KR.O'\.I al ototypical knowledge about a generic transformation re-
provides ;pecmc rel_atlons re_lat.ed to the description ource which is instantiated to collect its particular features.
the Tollowing dynamic behavior: It has severaktate slots representing its overall state (see

« net relations support HLPN arcs and expression§ig- 2)- Available-capacity represents the capacity to
labeling them, and are used to specify connectiof$0C€sSs different parts at the same time, wh_el‘eaded,
betweenstate slots andtransitions. The informa- inprocess,  and unload-ready identify different sub-
tion about net relations is stored iransitions. states when part or its overall capacity is being used in

« synchronization relations provide a simple way to Processing products.

specify interconnection between dynamic entities, Obijects that evolve through the underlying net afyaamic
which is done by means of the synchronization dibiect have a dynamic relation witbtate slots calledmark-

e ing relation, which defines the entity state (for example, as
can be deduced from Fig. 2, prodymrt #1 has a marking
relation with state slotoaded ).

Control objects These objects provide the mechanisms Each place in a HLPN has an associated set of possible

and policies used to implement the evolution rules of thekens. In the same way, eadhiate slot has a constraint

underlying HLPN foken playefin Petri net terminology (valueclass metaknowledge) associated to the class of objects

and inference engindn the knowledge representation(tokens) that it can contain. In the examp#jailable-

terminology). The search for enabled transitions is cacapacity = may hold neutral  tokens (they can also be

ried out by an efficient matching algorithm. seen as simple integer values, because their identity and slots
A KRON model can be not fully deterministic, that is,are not considered). Howevdrpaded, inprocess, and

there exist points in which decisions have to be taken imload-ready may hold product s, and the identity of

order to establish the model evolution. For the selectianstances in these places is considered in the state represen-
phase, transitions are grouped immnflicts by inspect- tation. A product instance inloading denotes that it is

ing the net structure, and each one is provided withlaaded and ready to be processednprocess denotes that

activities in theactivity slots that constitute th
interfaces ofdynamic objects.
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oad
jon- - , i { Milling#2 3 { Part#1
(Tra,r’rs\?r;ntzztrﬁgf:res'?gﬁgfr:nation-resource /T' ansformation- ¥ part#l member-of : Operation membe r-of : product
; state info resource#21 B d primary-resource: Machine#2 weight: 23
Loading: part#1 Loaded secundary-resource: thread-cutter size: medium .
attributeclass: state produ ct : Product current- ope rat ion: Milling#23
valueclass: product ftt : . next- ope rat ion: Screwing#12 }
/ T begin-operation previous-ope ration :

inprocess:

attributeclass: state
valueclass: product \ . 6 )
Unloading: Avallable- Inprocess

attributeclass: state capacity

valueclass: product .

Available-capacity: S o end-operation
attributeclass: state S 4
valueclass: neutral S,
; activity info \\,\ O Unload-ready
; other information S F
’ NSV S
— \- - nload /
current-operation
@ (b)
prewous operation previous-operation
Fig. 2. Transformation-Resource : (a) textual state description and

next- operatlon next-operation

(b) graphical state specification.

the product is being processed, andumoading that the Fig. 3. Token andrelation representations.

product has been processed and ready to be unloaded.

In KRON, token slots are taken into account in order to
complete the state representation. This means that the systefn the other hand, from a knowledge representation per-
state is defined not only by the marking relations, but alspective, information about activities can be considered as
by the token slots that are relevant for that state. Structuréeclarative knowledge in the “if/then” rule style (the similari-
tokens allow KRON to benefit from some HLPN advantagdies between HLPN transitions and rules in rule based systems
like the aggregation of dynamic information to obtain morbave been pointed out in several works [29]). The only differ-
concise models, maintaining at the same time the power &fce is that in rule-based languages the enabling conditions on
using relations and its integration with the rest of the systetie left hand side of the rule (Ihs), are clearly separated from
code. the causal conditions on the right hand side (rhs). Nevertheless,

To illustrate the representation power supported by thige execution of a transition implies removing the enabling
relational construction of tokens, let us increase the complextgkens from the input places and puttitukens in the output
of the example. The processing of produpart #1 places according to theost-net-relations. In this sensepre-
is not only performed in machindransformation- net-relations play the role of thdhs as enabling conditions,
resource #21 but that its complete processing is performeénd bothpre-net-relations and post-net-relations play the
by means of a sequence of operations in different meple of therhs as causal relations. The integration of rule-
chines. A good designer would include, for example (sdi&e knowledge in a frame based representation schema is
Fig. 3), a new object classperation  with information common to most knowledge engineering environments, see for
about several operation features and related operatign@mple KEE [30], LOOPS [31], and KnowledgeCraft [32].
(next-operation and previous-operation ). Fig. 3 Some advantages of such integration are described in [33] and
illustrates graphically howpart #1 (and all products of [34]. The rest of this section is devoted to explain how several
type product ) follows a sequence of three operation¥ansition features are represented and used in KRON.
(milling  #23, screwing #12, and storage #7). Expressions labeling the arcs are represented in KRON
This relational information is managed by the applicatiods arc expressions in pre- and post-conditions. Amrc
from various possible points of view, other than its toke@xpression is a specification of restrictions on objects. These

perspective. restrictions are represented by a list of component pairs: the
. ) first component is the specification of a slot name or the string
B. Activity Representation unit.name denoting an object name; the second component,

From the data structure point of view,teansition holds composed by one or two elements, is a partial pattern to match
descriptions such as specialization relation, membership tbé slot value, it can be a variable, a specific constant value,
its dynamic object, procedural information attached to thea function or expression or anotharc expression.
activity, pre and postconditions, actions produced by activity Following with the behavior representation of the

execution, etc. Transformation-resource #21 object, the activity
From a discrete event system perspectixansitions carry slots start-process, end-process, begin-
out the specification and semantics of HLPN transitions. Petyperation, and end-operation , point to the

net arc information is supported in KRON met-relations correspondingransitions that represent activities producing
represented by two remarkable slotstiansitions: Relations state changes. To illustrate the internal structure of a
from state slots to transition objects working as enabling typical transition, let us focus on a transition instance
conditions are in there-net-relations slot, and relations from from the Transformation-resource #21 object,
transition objects to state slots working as causal relationswhich is shown in Figs.4 and 5 and callegegin-

are in thepost-net-relations slot. operation #21. The value in itspre-net-relations
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{ Transformat ion-resource#21

* An arc expression may appear as the second component

of anotherarc expression. This is a pattern to match

memb er-of:Transformat ion-resource

- p Trunsformation- . . . .
istate o resoira#2] with the objects which are stored in the slot. For ex-
; activity info Loaded . .
load: load#21 ample:(unitname  {prod ) current-operation
un load: unioad#21 . _ prod :
o aoperation: endoperiontzr | o (next-o_peratlon (ne>_<t-op )) _ _
othernfomaton rprocess In this case{next-op ) is bound to the object that is
: in the next-operation slot of the object stored in
here - )  Srd-opertion the current-operation slot of the object bound to
n: unit.name 'n
Prot: (it mme T vent-cperation Uoac-eacy {prod ). _ _
next: (unit.name sprogn o oY « To facilitate an incremental model design, KRON allows
current-operation NULL <next-op») ; P i :
the use of incomplete transitions whose missing vari-
Fi 4. Descrioti ¢ Transformati 01 ables in preconditions must be provided by transition
. 4. I n ran rm n-r r . . . . .
9 escription of Transformalion-resouree # synchronization (see Section IV). These variables play
the role of parameters of the services provided by the
P stz objects. For example, the activitiésad and unload
Pronatretioney " opereton promet raitione:. of Transformation-resource #21 constitute its
(Transformation-resource #21 Load (Trans ¢ urce #21 labl pacity .
ot ) ot interface, and they have the paramqqmrod ). N
(i name <proas 0! it name <proa) - 101 Lo  The keyword NULL may appear in postconditions.
assoc-data: <prod> assoc-data: <prod>
prodicate: " T predicate; T NULL deletes all values from the slot. For example,
:  peremeters: <proc> (unit.thame  (prod ) current-operation NULL
H:'pm":.f:."‘" L - (next—qp }), removes al! values from slaturrent-
(Transformation-resource 121 npr ”’fi&?‘;’*‘“"""s‘d» #21 Unicadreacy operation  before adding the new value bound to
p&.i".nu““iszddy’ e 421 Avaliable-capacl (next-op ). Addmonal_ly, a slo_t valqe can be replaced
ritmame <progs sssacama; <o by another value using a list wittNULL and the
EE%%ESZ‘;”T“’“"”‘”e“""” BN, st <prot> removed value. For examplgunit.name (prod )
) ’ operation (NULL (op)) (next-op }) removes the
value bound to{op) from slot operation  of object
Fig. 5. Transitions offransformation-resource #21. {(prod ), then it adds the value bound taext-op ) to
this slot.
slot is: (Transformation-resource #21 Loaded Addltlo.nally,_eacrtransmon .has epredmgte assomate_d_.
(unit.name (prod })) . The predicate imposes a logical constraint on the transition

dynamic object Transformation-resource #21. The

th

{prod )) which is labeling the arc.

(prod )). As it is general in rule based systems, variables pl

a

enabling. It is a Boolean function which can only contain
those variables that are already in the expressions of the arcs
connected to the transitions. The predicate is supposed to be
true by default.

Sometimes it is useful to execute some action (execution of
ome particular subprogram). This is the purpose of a transition
ethod calledaction . This method is called each time the
transition is fired. The method receives the bindings of the
ggnsition variables as a parameter.

The first two elements identify thetate slot Loaded in the
ird element represents thac expression (unit.name
KRON variables are identified by angle brackets (e.g.

double role:

Specify flow conditionsArc expressions in the precon-
ditions are interpreted as patterns that must be match
They identify a token that must be in place slot for C. Instances, Classes and Inheritancedgnamic Objects

a transition to be enabled. For example, the expression the purpose of previous subsections was to explain how
(unitname  (prod ) operation  (op)) defines a ihe gynamic behavior of particular instances is described
pattern that matches all tokens having some value in the slotkRON. However, as it is typical in object-oriented sys-
operation . There will be a bindi_ng between the variablgems the prototypical knowledge of tiransformation-

{prod ) and the matched value with slot namame, and  resource #21 behavior is inherited from its ancestors; an
there will be another binding betwegop) and the values jnstance is only the last link on the inheritance tree. In this
in its slot operation . Additionally, these bindings can section we will focus on the use of inheritance as a mechanism
establish equality constraints on ottanc expressions of {5 share code and representation.

the sameransition with the same variable names. Object-oriented modeling starts by creating a hierarchy of
Specify data flowValues bound to variables in precondic|asses, from more generic to more specialized, whose ele-
tions can be transferred to postconditions. Additionaly, ments will be further instantiated to build a particular system
expressions in postconditions can specify modifications inmodel. Frame based languages make emphasis on inheritance
the transferred data. Information of bound variables is alggsyes and they provide not only support for traditional slots
used to update slot values of the tokens involved in a firingnd method inheritance, but also allow the programmers the

Some particular features may be usedain expressions to  specification of additional types of inheritance (overriding,
increase its expressiveness: adding, unioning, and wrappering).
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The construction of the class hierarchy is based on a
classification process. In our working context of discrete event (Manufacturing-resource  { Transformation-resource

system domain, entities with similar state space and behavior _st;st;al;nfodynamiC-obiect Js-a: Manufacturing resource
are grouped defining a hierarchy dfnamic object classes. ' Avail?)ble-tlzapacy: " Loadig:

. . . attributeclass: state attributeclass: state
A Qynam|c objegt clas§ is a tgmplgte to co.nstruct- a.composed valueclass: neutral valueclass: product
object, whose instantiation implies the instantiation of the - aclt/wg/ l?fod lnprobcessi:

. . . . oad: loa attributeclass: state

HLPN structure that d_escrl_bes its behawor. All instances of &  unload: unload valueclass: product
dynamic object class inherit the same Petri net with the same ; other information Unloading:
L . . .. . attributeclass: state
initial marking. Following the same procesgnsitions with } valueclass: product
similar structure and behavior are classified in a hierarchy tree ; afg‘a’g{’ ”l’g‘; ot
of transition classes. Therefore, the behavior of a child class unload: unload-tr
P ; i ; ; P i begin-operation:  begin-operation
is obtained from the mhente_d_Petn net by a_dplmg reansi end-operation: ~ end-operation
tions andstate slots, or providing more specific details about ; other information
them. For example, inheritestate slots may be specialized -

with additional restrictions on the tokens they can hold.
The_ creation of th_etran3|t|<_3r_1 hlerarChy requires m_or_e Fig. 6. Template modification aflynamic object classes.
attention. Thus, a child transition class may be specialize

in the following different ways.

Adding enabling conditionsThe inheritance type of the
pre-net-relations and predicate  slots isunion
This means that their values are derived by #imel com-
position of the values that are in the subclass slot and
the inherited values from its superclasses. Therefore, the
net enabling conditions of &ansition class is restricted
by defining new values in there-net-relation slot of a
transition subclass. Additional enabling conditions may be
imposed on dransition class by adding new values to the
predicate slot.

Adding new actionsThe inheritance type of theost-

load <prod>

Manufuctiing-
resource

Availabie-capacity

. Used-capacity

unload <prod>

net-relations andaction slots is alsaunion When S
.. . . . ransformation-
thetransition is fired pre-net-relations andpost- resource
net-relations imply the modification of the respective
state slot values. Therefore, new actions may be defined
by adding newpre/post-net-relations values to begin-operation

prod

Available-

a transition subclass. Atransition firing also implies the ey
1]

execution of theaction method. Theaction method may

be specialized in a chiltransition class by wrapping code
before, after or around the inherited code or overriding
it. Moreover, the code of action methods implies the ex-
ecution ofdynamic object methods. Therefore, the action
method can be indirectly specialized by the specialization
of dynamic object methods.

In this design context, the construction of theansfor -
mation-resource , whose instanc@ransformation- )
resource #21 has been shown in previous examples, do&¥:
not start from scratch, but as a specialization of another class:
Manufacturing-resource . The Manufacturing- and 7, theTransformation-resource class adds two
resource class represents the behavior of a generactions,begin-operation andend-operation , which
manufacturing resource. The responsibility of this abstradéscribe respectively the beginning and end of the transfor-
entity is to perform some process on some product (moahation performed on the product. It also defines substates
ification, transport, storage, etc.). The underlying Petri nef products inUsed-capacity : Loaded, Inprocess,
of Manufacturing-resource specifies that a genericand Unload-ready
manufacturing resource has a limited capacity that must beFigs. 6, 7, and 8 provide a better understanding oftrtéue-
available to perform its process and that the process stagitson inheritance in KRON and its use ldynamic objects.
with a load action and finishes with an unload action. The load action of a Manufacturing-resource is

The Transformation-resource class is built from specialized inransformation-resource by overriding
Manufacturing-resource . As it is shown in Figs. 6 theload slot value withload-tr , which is a child ofload

. Used-
Inprocess capacity

end-operation

next

unload <prod>

7. Behavior modification oflynamic object classes.
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history information, which does not manifest itself in

{load {unioad = the values of the inherited instance variables.
Is-a: !ransmo_n Is-a: transIm:?n . ) L.
-net- : -net-relations:
pr(e/\c;tla'slea-g:é‘:city {unit.name 'n)} pr&):leota:frgagﬁunit.name <prod>)) 3) State mOdIflcatlon anomalﬁppears When the deflnltlon
-net-relations: t-net-relations: i ificati i i
p?ats::}c;%:gi?yn(sunit.name <prod>})) p?Zv:ifabl;:—?:a;::;ty(unitname 'ny) Of a _SUbCIaSS_ _requ”es the mOdIflcatlon Of_ Inherlted
parameters: iprot _ Berametare: “Pivods enabling conditions to account for a new action.
predicate: (unitname <prod>s-a product) 1} KRON mitigates some of the effects of the inheritance
}
{oac-ir {unload-tr anomaly. A KRON model allows the appropriate separation
e relations: brenetrelations: of the synchronization code (enabling conditions) from the

(Loaded (unit.name <prod>)} (Unload-ready (unit.name <prod>))

action (a piece of code) attached to transition objects. It makes
the refinement of actions easier, allowing the inheritance
mechanism to override the two parts separately. On the other
hand, Petri nets have a guard based synchronization schema.

transition. load-tr  specializes the load action specifyingl hus. the state partitioning anomaly pointed out in [35] does
that loaded products will be placed loaded state slot. NOt occur because the addition of new net conditions allows

In the same way, thainload transition is specialized by the differentiation of substates.
overriding theunload slot with its unload-tr ~ child.
A transition instance is never created directly, but only IV. DYNAMIC ENTITY CONNECTIONS
through the instantiation of itsynamic object. Transition . . ) )
classes imactivity slots are instantiated and replaced by their 1N€ construction of system models in KRON is done incre-

instances. An important feature of KRON is that the represeW—er!ta”y by_first, designing isolated entities and_ then imposing
tation of an activity that is carried out in cooperation amongj€ interactions between them to compose a bigger subpart of

different entities, is collected into only ontansition € syste_m _model. From a dynamic perspecti\_/e, the b_ehavior
instance. In this case, thstate slots of pre- and post- of an entity is represented by a HLPN underlyingymamic

conditions may belong to differenlynamic objects. For this object. The overall dynamic model will be homogeneous if the

reason daransition instance inherits all slot values from the.dyn"’ImIC interactions betweetynamic objects are described

transition class, butpre/post-net-relations add to N the same terms as the internal behavior of objects. This

each inherited net relation a reference to dy@aamic object means that if the interactions are described in terms of place_s,
instance transitions and arcs, the behavioral model of the system will

A newdynamic object class can also be createdimltiple be a HLPN and the advantages of using this formal view can
y J P Eeqfully assumed. In KRON, the representation of interactions

inheritance In this case, the subclass inherits several separate . .
. . e .~ betweendynamic objects becomes the same problem as the
nets from their superclasses, which can be joined to build PN connections

more complex one. The connection can be made by addin , . .
. . . LPN’s may be connected by merging transitions or places,
transitions and places that model the control flow interactign

and by means of new arcs [36]. In KRON, transition merging

between inherited nets. Multiple inheritance facilitates comp%‘-is been selected as the main mechanism to represent the

sition of incomplete representation behavior (virtual c:IasseI eractions betweendynamic objects. The advantages of

during t.he model dgvelo.pment. This means hatihe et I?ﬁlts approach will be pointed out at the end of this section.
underlying gdynamlc object clas_s may be incomplete, andThis approach provides a synchronous communication style
therefore th_|s class should be refined to complete the beha\’t‘r?ar\t has been adopted by other works in Petri net integration
repr_esent:?\tl_or?. as CO-OPN [15] or OBJSA [12]. In this mechanism, an
Finally, it is important to note that some problems have beghe 4 ction between two or more objects can be interpreted
detected with the integration of concurrency and inheritances o execution of a joint activity, where each object has
In concurrent object-oriented languages, it is caigdchro- oy 4 partial view of the real activity and its constraints. This

nization codethe code that selects the set of services thatigeraction implies the synchronization of the internal behavior
concurrent object can execute and that depends on its stgteinose objects.

that is, the enabling conditions of transition objects in KRON g jjjystrate the possibilities for dynamic entity connections
terms. The reuse of the synchronization code in concurrgt il synchronize some objects designed above with other
object-oriented languages has been considered difficult dygiliary entities creating a more complex model. Consider,
to inheritance anomaty synchronization code cannot beyq gp example, a simple manufacturing work cell, composed
effectively inherited without nontrivial class redefinitions [35]6f two machines N#:1 and M#2) with input and output
Matsuoka and Yonezawa identify three kinds of inheritanqgffers, a random-access input stoi® 1), a random-access
anomaly. output store ©QS#1) and a robotR#1) for palleting. Fig. 9(a)

1) State partitioning anomalyoccurs when the subclassshows thedynamic object instances needed before their
needs to make a partition of the set of states tlwnnections. (Underlying Petri nets have been simplified and
superclass can have. the arc expressions and marking relation are not illustrated for

2) History only sensitiveness of statesppears when the simplicity.)
methods in a parent class must be modified because thé&et us focus on the connections between machMgd and
application of a method in a subclass depends on thg input bufferIBM#1. Transition unload from IBM#1

Fig. 8. Template modification dfansition classes.
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Fig. 9. Example of normal and bilateral synchronization.

specifies an activity to unload a part stored in the buffer; toansition generated by the merging replaces the originals in
do that, the part must be in the buffer. On the other hanal] activity slots involved in the synchronization. It allows
transition load from M#1 specifies an activity to load a partthe different dynamic objects related by a synchronization to
in machineM#1; to do that, it is necessary the availabilitymaintain the same view over a transition after the merging.
of M#1 (specified by its preconditions). In the example, we Two types of synchronization (by transition merging) have
want to feedW#1 with the parts fromBM+#1, this means that been designed for KRONNormal synchronizatiosubstitutes
there must be some interaction between both activities (in fasynchronized transitions by a unique transition with all pre
they could be considered as partial views of the same activitgnd postconditions of the original ones (this is the case of
This interaction can be represented as the merging of transitibe interaction betweekt#1 and IBM#1, which was shown
load from M#1 and transitionunload from IBM#1. The above and which is illustrated graphically in Fig. 9). However,
result is a transition that models the transfer of a part from tlaeslightly different case arises when a single activity may
buffer to the machine synchronizing the behavior of both. be synchronized with several alternative activities, and these
To support this approach, thdynamic objects interface other activities can not be synchronized with one another. This
in KRON is a set ofactivity slots. Thus, the transitions of is the place for abilateral synchronizationwhich supposes
a dynamic object can be internal or interface transitionsa replication process. This is the case of the roRgtl in
Only the interfacetransitions can be externally synchro-the exampleR#1 can be used to transport the parts between
nized. Connections betweelynamic objects are established buffers and stores. The satoad transition is used to take a
by naming theactivity slots that must be related in somepart anywhere, but a different instance must be created for any
manner. The synchronization mechanism generates a rewifer or store, which must not be influenced by the others.
merged transition by multiple inheritance of the originals The model of the robot must be built as a reusable component
(for a complete transition merging, additional mechanisms arelependent of the necessary number of inputs and outputs.
supported in KRON to specify the relations between variabl@$us, the robot is modeled with only one input and one output
from different transitions whose names have local scope). Ttiat will be replied as necessary when the robot is connected
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{P3

instance: PART {p3
machine: M3 o1 instance: PART
tool: TL) instance: MACHINE machine: M3 .

s tool: T1}
part-in-process:

(el tool-in-use:}

instance: PART
machine: M2 o

tool: TS5} instance: MACHINE
part-in-process:
tool-in-use:}

ingtance: PART
machine: M2
tool: TS5}

{pL
instance: PART
machine: ML
tool: T1}

{Tl
ingtance: TOCL) ingtance: MACHINE
part-in-process:
tool-in-use: ) (T18
ingtance: TOOL}

{T18
ingtance: TOOL}

PARTS TOOLS

CHINES

{unit.name <part> {unit.name <machine>) {unit.name <part> {unitname <machine>]

nachine <machine> Tunit.name <tool>} machine <machine> {unit.name <tool>}
ool <toul>} * rool <tool>}
<part> <machine> <tool> LOAD <part> <machine> <tool>
{uml nume <macline> /u/nt name <machine>
{unit.name <pml>} part-in-process <part> {unitname <pari f)} part-in-process <part>

mnl in-use <tool>} mnl-m-u‘\‘e <tool>}
(r1 el
inst a: PART instance: MACHINE
PARTS-IN-PROCESS BUSY-MACHINES part-in-process: Pl
machine: M1 1
tool: T1) tool-in-use: T1}

Fig. 10. A simple KRON net example.

with other resources of the manufacturing plant. The robotodels are really executed. The underlying HLPN provides
model before synchronization can be seen in Fig. 9(a) wher¢hs behavioral rules for the model evolution which is es-
Fig. 9(b) shows the robot model after its synchronization. tablished by transitiorfiring. Firstly, the execution model
Some characteristics of the proposed approackyoamic  will be illustrated through an example and then, an efficient
entity synchronization are as follows. implementation of the execution mechanism will be presented.
1) Synchronized transitions are handled as a single objddtis is the software created to simulate the firing of transi-
that belongs to cooperative objects. In this way, contions following the theoretical rules imposed by the HLPN
munication between different entities, from a dynamigemantics.
perspective, is supported by the same formalism thatFig. 10 shows an example used to illustrate the execution
defines the internal dynamic of each object. model. The net, composed of five places and only one
2) Transition merging has the advantage of easing th@nsition, represents the loading activity for a set of machines.
system analysis, because many properties are preservbg expression
when nets are composed in this way ([37] and [3§unit.name (part ) machine (machine )} tool
among many others). (tool )) in the arc from placePARTS to transition
3) Synchronized transitions provide a symmetric form dfOAD allows three different bindings for variablégpart )
cooperation by an arbitrary number of entities, antmachine ) (tool )) regarding the actual marking:
no direction of communication is intended. Transitioff (part ) = P1 (machine ) = M1 (tool ) = T1)
synchronization provides a higher level mechanism fo{part ) = P3 (machine ) = M3 (tool ) = T1) and
communicate objects than the classical message pass{ngart ) = P11 {(machine ) = M2 (tool ) = T5).
Collective behavior of objects can be described without A transition is enabled if there exists @nsistent binding
an implementation model of communication, and doder its associated variables. This means that tedhsition
not restrict the model to the client—server framework. variables are bound, the bindings from all input arc expressions
4) It may be argued that synchronized transitions violasge the same and the variable values verify the restrictions
the encapsulation, because they have access to the Idcgdosed by the predicate associated to the transition. Each of
state of cooperativdynamic objects. However, a syn- these consistent bindings defines a diffefaiig mode In the
chronized transition denotes a relation betwdgnamic  example shown in Fig. 10, there exists only one firing mode
objects that defines the rules of this violation. Asthat is defined by the following consistent bindir(gipart )
Rumbaugh points out in [39], a relation is not something P1 (machine ) = M1 (tool ) = T1).
to be hidden, but rather, to be specified abstractly, A transition firing may occur if thetransition is enabled by
without imposing an implementation. some firing mode. The state change happens when the firing
mode occurs.
It is important to note that HLPN based models can not be
completely deterministic. There exist points in which decisions
In the previous sections, we explained the different primmust be taken. From the Petri net point of view, this decision
itives and mechanisms to create models of discrete ev@uaint corresponds to eonflict A conflict can be created by
systems in KRON, but we still have to consider how thegast one or several transitions with firing modes that compete

V. THE EXECUTION MODEL
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for the same tokens. A conflict must be solved as a whokpecific than the one in general rule-based systems. The control
That means that if two transitions are in conflict with a thirdnechanism of KRON implements a strategy for specializing
transition they are also in conflict. @onflict groups transitions the RETE match algorithm so that it is more suitable for HLPN
that are in a coupled conflict relation in the net, and associateterpretations; furthermore, the KRON execution model al-
a control policy to decide the firing modes that will be fired.lows executing different firing modes in the same cycle to
In view of the Petri net structure it is possible to make preserve the concurrent semantics of HLPN's.
partition of transitions in conflicts automatically. According
to what we have established so far, the execution of a net )
follows a conflict-oriented approacBontrol policies receive A The RETE Algorithm
the firing modes that enable transitions and decide the firingThe RETE match algorithm [40] avoids the brute force ap-
or firing modes to be executed. proach taking advantage témporal redundancypersistence
The behavioral rules are supported in KRON by a so-called information in the working memory across the recognize-
control mechanism or interpreter. The control mechanism act cycle is called temporal redundancy). This is accomplished
interprets the model to make the net evolve. The implementy matching only the changed data elements against the rules
tion is based on the similarities between the inference engif@her than repeatedly matching the rules against all the data.
of a rule based system and the interpretation mechanism dfVith this purpose, the information about previous matchings
HLPN. The proposed technique makes use of an adaptatiorisofecorded in a graph structure calledtwork
the RETE matching algorithm [40], which is used in rule based The network is composed of a gloktakt tree common for
language, such as OPS5 [41], to provide an efficient inferer@ rules, and goin tree specific for each rule. The test tree
engine. As in RETE, the main idea is to exploit temporal datg composed ofone-inputnodes, each of them representing a
redundancies (coming from the marking that is not chang&ft over some attribute. A path between the root node and a
during transition firing). leaf node represents the sequence of tests required by a rule
The similarities between Petri nets and rule based Systep(qgcondition. The information related to binding consistency
have been pointed out in several papers [42]—[45]. A HLPgStS is represented by the join tree as_sc_)ciated to the rule (join
can be interpreted as a rule based system in which transiti¢i$ nodes are callesvo-inputnodes orjoin nodes).
have the role of rules and tokens are the working memoryWhen an element is added to the working memory, a
elements. We are interested here in those aspects of this eqAR/Dter to the element is introduced in the root of the test
alence that are important for the interpretation mechanism.ré€ and propagated if the test is successful. The working

Rule based systems can be decomposed into three pdREMOTY element pointers coming out of the test tree leaves are

rule memory, working memory and inference engine. TH_gtroduced in the join tree. Then, the pointers are combined

rule memory contains declarative information based in pril ples and stored in each two-input node. Each tuple

condition/consequence sentences. The working memory (dag4ects the working memory elements allowing a consistent

memory) contains dynamic data that are compared with th@é"”g {?‘t the cor:respolr:_dlng level. Atlljple n afm:;l t"‘;?"rr]'pﬁt
precondition part of the rules. The individual elements dgrede points to the working memory elements with which the

the working memory are referred to as the working memo sociated rule can be applied. . .
9 y 9 IE;B‘IsOn the other hand, when a working memory element is

elements. The rule interpretation mechanism is materializeéj oved. the corresponding pointer must be removed from the
by the inference engine. The inference engine executes whal ' P gp

. . LT npdes of the test tree. The tuples having this pointer must also
is called a recognize-act cycle [41], which is itself compos : .

: L e removed from the two-input nodes. When many working
of three main activities.

) . memory elements match the same condition element, removing

1) Match Performs the comparison of the dynamically, \yorking memory element is expensive. It takes a linear
changing working memory elements with the preconsesrch 1o find the particular element to be removed in the list
dition part of the rules. If a precondition is satisfied, thet nointers for a condition. The RETE test tree and join tree

rule is included in the conflict set (the set of executablgssqciated to the transitidfDAD seen as a rule, is shown in
rules for the present working memory state). Currently;jg 11

the match phase problem is often solved by the RETE
match algorithm [40].
2) Select Selects one rule from the conflict set. B. Taking Advantage of HLPN Structure

3) Act Executes the selected rule according to its conse-The main differences between HLPN's and rule based
quence part. models in the match phase are related towioeking memory
The inference engine cycles until no rules are satisfied Arrule based system has just one global working memory for
the system is explicitly halted. all rules, whereas a HLPN has its working memory split into
Differences in the representation appear because a rule doleges.
not remove the data that enable it in the execution. It forcesThe preconditions of a transition must match only against
the explicit representation of these updatings in the consequtrg tokens of its input places. This fact makes a place to be
part of rules. seen as a working memory partition. The main effects on a
Differences in the inference engine appear because HLPNRRETE network produced by this partition can be established
provide some features that make its implementation moas follows.
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WORKING
MEMORY

Inplace

MACHINES

{bind <amachine> to
value of machine)

(bind <part> to
value of part)

(bind <machine> to
vadue of machine)
(bind <wol> to

value of twol)

Test Tree

Join Tree

_____ Jom elements in wich
machine atribute from

left equals machine atributie
from right.

Join elements in wich

machine attribute from R X
left equals machine Join elements in wich

tool attribute fi left Join elements in wich
atributte from right. ool attribute from lef T T
& \ equals tool atributte from toel attribute from left

right. equals tool atibutte from
right,

Fig. 11. RETE network generated from transitib®@AD

Fig. 12. Network generated froilcOADtransition profiting from the HLPN
structure.

« The root node is split into several nodes, one for each
input place, each one defining itself a local working, the allocation of the tokens of the places involved are
memory. _ made. However, there exists another important aspect to be
* The test tree of the network is reduced because no clggpsidered in the interpretation of HLPN's. Removing a datum
or place tests are needed. Consider the RETE netWgfkm the working memory in the RETE match algorithm
for the transitionLOAD Each branch has a test over thgypjies finding all references to the datum through the RETE
token class and a test over the place where the tokgstwork. In order to find the nodes that have references to
is. The place tests can be avoided when it makes usez0femoved datum, the original RETE algorithm repeats the
the HLPN structure because each condition element hg@cess of pattern matching. This source of inefficiency is not
an input arc implicitly associated. The class t85ART,  gramatic in rule base systems because this is not an action
MACHINE, or TOOJ can also be avoided because eadat occurs systematically. But it would be unacceptable in
place has a set/class of possible tokens associated. | pN interpretations. For this reason, in KRON, each set of
* It can not make use of thetructural similarity [41]. pindings is linked with the set of bindings that generates it
The structural similarity allows the sharing of partialy means of consistency tests (their predecessors), and with
branches of the test tree by different, but similar, condjneir successors. The set of bindings located in entry nodes
tion elements. Except in places that are shared by sevesglnot have predecessors. In this case, a link is set between
transitions, the branches of the test tree come out froffe set of bindings and the token that generated it. This highly
separate root nodes. This fact makes it impossible ffjated data structure allows a fast tree updating because it
nodes to be shared. avoids search.
If the structural similarity is not used, the test tree obtained is 2) Selection PhaseThe selection of one rule from the
a set of separate chains coming out from root nodes. Thus, eaghflict set is accomplished in rule-based systems applying
chain can be reduced to only one node representing all testé®icepts such as recency, refraction or specificity (see strate-
and bindings of the corresponding condition element. Thegies LEX and MEA from OPS5 language [41]). However,
nodes will be calle@ntrynodes. This is graphically illustratedthere are other important issues to be considered in imple-
by the network shown in Fig. 12. It can also be compared taenting HLPN's.

the RETE network in Fig. 11. a) A HLPN can model concurrence. In each execution

cycle, more than one enabled transition can be fired.

C. KRON Inference Cycle b) The strategies to solve conflicts depend on application,

The recognition phase is executed when a token is added and the resolution objectives can be different in each
or removed from a place. We will illustrate how the pattern  conflict.
matching phase takes advantage of the partition of workingln the KRON interpreter, transitions are grouped by con-
memory. The phases of selection and execution should tdkets, each one having its resolution strategy called control
into account the concurrency represented by the model.ptilicy. During the selection, all enabled transitions from a
implies that more than one enabled transition can be fired.conflict are considered as a whole, the conflict control policy

1) Matching Phase:A similar data structure to the RETEIs responsible for providing a solution (transitions and firing
network is generated for each KRON transition. As in a RETEodes must be chosen). The KRON interpreter offers a control
network, the intermediate results of the matching process g@aicy object library but the user can design new control
stored and recalculation can be avoided while no changeslicies according to the application domain.
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1) classical interpretations of HLPN's;

000 T 2) the RETE;
40.00 4 / 3) the TREAT approach.
35.00 i The example model was made using a model of the typical
/ world block problem [48]. Fig. 13 shows that the KRON
. 80,001 / - - approach based on the RETE algorithm does not suffer the
= 2500 1 / T Gleskdl combinatorial explosion that an increment of the size in
%20.00 1 / —EE the number of tokens entails. (KRON interpreter has been
2 / Pl implemented in KEE, on top of Common Lisp, running on
’ a SUN workstation).
VI. RELATIONS TO HLPN'’S

The Petri net underlying a KRON model can be considered
as a subset of a HLPN with a special syntax. However,
tokens there still exist restrictions that are introduced to improve
' _ _ _ the modeling and simulation capabilities of HLPN's to solve
T e e o o i o s wesfactical tasks. The formal analysis of properties was not a
blocks. crucial issue in the KRON development. Our approach is

closer to the work presented by Cherkaseval. [49], which
combines HLPN's with modeling by direct programming,

3) Firing Phase: A transition firing with respect to a firing tha_m to works that ex'Fend the HLPN for_mahsm. Cherkasova
mode (pattern of the level) carries out the following steps. POINtS out that a straightforward modeling of large systems

a) The calculation tree is traversed backward from thbé/ means of nets can “?S“'t ln.practlc:.illly nonexecutable

. S . models due to the intensive testing of firing modes for a
con5|sten.t binding (firing mode) t.o the tol-<ens used ﬁgrger number of transitions and the huge number of possible
gen(_arate it. Each of these tokens IS th_en withdrawn _fro indings. For this reason, they proposed using nets only when
the mput.places anq a tree updatmg is performed in %Lcessary, representing the system concurrency, and directly
the trapsmons sharing thesg Input places: . rogramming other procedures of searching, matching, sorting,

b) The piece of code associated to the firing mode g‘%_

executed. . . . .
. .. _Following this pragmatic approach, the HLPN formalism
¢) The tokens specified by the output arcs of the transm(?g not extended, but really, it is constrained to use simpler

are added to the output places and a tree updatinggly, ossions. A KRON net differs from HLPN's (as defined

performed in all the transitions having these places g5 '150) in the following restriction: the number of tokens

Inputs. added or removed to or from a given place is always the same

4) Efficiency IssuesClassical implementations of HLPN's for different occurrences, and it is constrained to one-per-arc
interpreters have emphasized techniques for fast selectioncghdition. It is not an important restriction because more than
transitions that may be enabled. In situations with mediughe firing mode can be fired in each interpretation cycle. That
and high marking levels, an approach based on RETE ne@feans thatonflicts can decide to remove a different number
mally seems more efficient because it avoids recalculatiogstokens according to the defin@dntrol-policy.
and it considers also transitions that are completely enabledanother important difference with HLPN’s is introduced
However, McDermott, Newell, and Moore suggested in [46]y the integration of HLPN’s with the object model. KRON
that the RETE match algorithm may be inappropriate whabkens are entities, and their attribute values and relationships
a completely recalculation of firing modes implies smallegre considered in order to describe the system behavior. The
number of operations than the number of operations involvedtiure of these tokens introduces a property callbijuity
in keeping the information about the tests performed in eaf#p]. Ubiquity concerns the token ability to have several
cycle. The cost of removing a datum from the working memonyccurrences in a marking. Formally, a KRON net with ubiquity
and the size of the saved information in the join tree becorie not a correct HLPN because it produces the loss of the
the main drawbacks of the original RETE algorithm. Mirankeransition scope. Ubiquity produces the following undesirable
developed the TREAT algorithm to avoid those kinds déffects. 1) It violates the partition and encapsulation of the state
drawbacks [47]. The TREAT algorithm is similar to RETE buin dynamic objects. Moreover, it hides the way transitions
does not save the result of partial matching between cycles, thiedify the state because they have unlimited writing access
means that it does not use the join tree. The KRON approachall token attributes. 2) Ubiquity is a property irreducible
avoids the cost of removing a datum in a different way froro algebraic analysis. This problem is not exclusive of the
TREAT, because it is done by linking the patterns to theintegration of the object model and Petri nets. The problem
ancestors and successors. arises in any representation language that allows different
Fig. 13 illustrates an experimental comparison of thraeferences (object pointers) to the same object. This property,

different interpreters of a KRON model based on which is known agslynamic aliasingmakes it difficult to prove

Number o
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Fig. 14. Appearance of the KRON editor/animator.

the correctness of a system representation theoretically [54]th the animator to solve decision points. Fig. 14 shows the
KRON allows the modeler to decide whether to avoid ubiquitgppearance of the KRON editor/animator.

in order to prove the correctness of the system representationiAs an example of application of KRON to a particular kind

or to model in a more flexible way without to worrying aboubf SED’s, a manufacturing-oriented tool has been built using
the ubiquity problem. KRON. Manufacturing intended KRON (MIKRON) provides
specialized concepts for the modeling of manufacturing sys-
tems, such as resources and operations, and it covers tasks

' . like coordination, scheduling, planning, simulation, etc. [52].
The software development of complex SED's requires t00f§ graphical interface specializing in manufacturing systems
to facilitate the modeling task and to manage a huge Volumgs also been developed.

of different knowledge. A prototype of a simulation tool with
graphical display and animation facilities has been imple-
mented in KEE [30] running on Sun workstation. KRON is
used as the kernel in the environment and provides a generién this paper we have presented KRON, a knowledge repre-
knowledge representation schema. sentation schema for DES’s. KRON enables the representation

The user friendly interaction is carried out by a graphiand use of a variety of knowledge about a DES static structure,
interface based on menus and windows accessed to throughathé its dynamic states and behavior. It is based on the
mouse. KRON interfaces are implemented upon KEE facilitiéstegration of high-level Petri nets with frame based represen-
to develop graphical interface. KEE provides interfaces tation techniques and follows the object-oriented paradigm. In
display a knowledge base organized in an inheritance netwoakidition to the features generally supported by object-oriented
and allows fast access to all information. Any frame may Hanguages, a set of primitives implementing the high-level Petri
picked out from such a graph, its contents examined, andnét formalism is included. HLPN’s provide the mechanism
other frames are referred to as slot values, their contents t¢ardescribe the internal behavior of dynamic entities and the
be examined as well. interactions between them.

In addition, the graphic module offers a KRON net edi- In the representation of discrete event systems, HLPN'’s lack
tor/animator. It allows a graphical representation of the beiethodological and data representation aspects. To deal with
havior based on the HLPN formalisnDynamic objects these deficiencies, the main approach adopted by researchers
are represented as bordered Petri nets. As an editor, KRO&s been to increase HLPN'’s with other paradigms such as
constructs may be built, modified, and connected. As afstract data types, object-oriented concepts or entity relation-
animator, it can animate the model during its executioship models. From a historical point of view, the work on
Animation may be automatic when definedntrol-policies integration has evolved to the integration of objects and Petri
solve decision points, or manual when the user interagtsts in two different ways: the use of objects as tokens inside

VII. DEVELOPMENT ENVIRONMENT PROTOTYPE

VIIl. CONCLUSION
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a Petri net and the use of Petri nets to represent the internal Germany, June 1989, pp. 192-209.

i i : ] R. Fehling, “A concept for hierarchical Petri nets with building blocks,”
behawor of ObjeC'[S. However, the first approach ha_s evowe@ in Proc. 12th Int. Conf. Application Theory Petri Nefsarhus, Denmark,
to incorporate also the second one. It can be established, as a 1991, pp. 370-389.

conclusion, that the work on integration has evolved to obtaif¥] S. Christense and N. Hansen, “Colored Petri nets extended with channels
; ; ; ; . for synchronous communication,” iApplication and Theory of Petri
a ,fu"y Integration of Petri nets and ObJeCtS’ KRON follows Nets, No. 815, Lecture Notes in Computer Scienderlin, Germany:
this approach. Springer-Verlag, 1994, pp. 159-178.
On the other hand, most of the integration approache@] J. Vautherin, “Parallel systems specifications with colored Petri nets and
. algebraic specifications,” ildvances in Petri Nets, No. 266, Lecture
extend the HLPN forma“_sm‘ The approach adopted does nOt Notes in Computer ScienceBerlin, Germany: Springer-Verlag, 1987,
extend the HLPN formalism. The frame-based representation pp. 293-308.

of KRON supports the data and methodological aspects witl§] J. Billington, “Many-sorted high-level nets,” iRroc. 3rd Int. Workshop

. Petri Nets Performance Model&yoto, Japan, 1989, pp. 166-179.
no need to extend the HLPN formalism. So, all the advamagﬁg] W. Reisig, “Petri nets and algebraic specifications,” Tiheoretical

of the use of this formalism can be profited from working with ~ Computer Science 80 Amsterdam, The Netherlands: Elsevier, 1991,

KRON. pp. 1-34. o :
[éle] E. Battiston, F. de Cindio, and G. Mauri, “OBJSA nets: A class of

KRON uses i.nheritance as a meCha.-nism. to share code high-level Petri nets having objects as domains, Aivances in Petri
and representation. The subtyping relationship has not been Nets, No. 340, Lecture Notes in Computer Scienderlin, Germany:

; ; ; Springer-Verlag, 1988, pp. 20—43.
considered because there is not a clear choice between B? E. Battiston and F. de Cindio, “Class orientation and inheritance

different notions of subtyping that we have found in the ~ in modular algebraic nets,” iProc. IEEE Int. Conf. Systems, Man,
approaches which integrate Petri nets and objects. KRON CyberneticsLe Touquet, France, 1993, pp. 717—723.

L . . B. Kramer and H. Schmidt, "Type and modules for net specifications,”
mitigates some of the effects of the inheritance anoma in Advances in Petri NetK. Voss, H. J. Genrich, and G. Rozenber,

allowing the appropriate separation of the synchronization Eds. Berlin, Germany: Springer-Verlag, 1987, pp. 269-286.
code (enabling conditions) from the action (a piece of codél)“] W. Reisig, Petri Nets: An Introduction Berlin, Germany: Springer-

L. . . Verlag, 1985.
attached to transition ObleCtS- On the other hand, Petri n?f§] D. Buchs and N. Guelfi, “CO-OPN: A concurrent object oriented Petri

have a guard based synchronization schema that eliminates net approach,” ifProc. 12th Int. Conf. Application Theory Petri Nets

itioni Gjern, Denmark, June 1991, pp. 432—-454.
the state partitioning anomaly. 16] K. Hee and P. Verkoulen, “Integration of a data model and high-level

; . . [
HLPN’s may be connected by merging transitions or places, ~ petri nets,” inProc. 12th Int. Conf. Application Theory Petri NeRaris,
and by new arcs. In KRON, transition merging has been France, 1991, pp. 410-431.

; : : ] A. Dileva and P. Giolito, “High-level Petri nets for production system
selected as the main mechanism to represent the mterg’g modeling,” inProc. 8th Europ. Workshop Application Theory Petri Nets

tions between dynamic objects. This approach provides a zaragoza, Spain, June 1987, pp. 381-396.
Synchronous communication Sty'e with all its advantages_ [18] A. Dileva, P. Giolito, and F. Vernadat, “Executable models for the repre-

. . . . sentation of production systems,”roc. IMACS-IFAC Symp. Modeling
The semantics of the behavioral rules is supported in KRON 0 Technological Systems, IMACS MCTS Bille, France, June

by a so calledcontrol mechanisnor interpreter The control 1991, pp. 561-566.
mechanism interprets the model to make the net evol&9 G. Berio, A. Di Leva, P. Giolitto, and F. Vernadat, “The*robject

. . . P methodology for information system design in CIM environments,”
The implementation is based on the similarities between the |eeg Trans. Syst., Man, Cybernvol. 25, pp. 68-85, Jan. 1995.

inference engine of a rule based system and the interpretatige] R. Di Giovanni, “Petri nets and software engineering: HOOD nets,” in
mechanism of a HLPN. The proposed technique makes us qu 11th Int. Conf. Application Theory Petri Net$990, pp. 123-138,

. . . s W. G. Hood, “HOOD user manual, issue 3.0,” Tech. Rep., Europ. Space
an adaptation of the RETE matching algorithm, which is used " agency, Noordwijk, The Netherlands, 1989.

in OPS5 rule based language to provide an efficient infereni@@l C. Sibertin-Blanc, “High-level Petri nets with data structures,"Rroc.

. . - . . Workshop Applications Theory Petri Net&inland, June 1985.
engine. As in RETE, the main idea is to exploit temporal datgs; v “paiudetto and S. Raymond, “A methodology based on objects and

redundancies (coming from the marking that is not changed Ppetri nets for development of real-time software,” Rmoc. of IEEE
during transition firing). Our experimental studies have shown Int. Conf. Systems, Man, Cybernefiés Touquet, France, 1993, pp.

. . . . 717-723.
how good this strategy is, which makes the CompUtauonf%h] C. Sibertin-Blanc, "Cooperative nets,” iAdvances in Petri Nets, No.

performance remain quite regular even with high net markings. 815, Lecture Notes in Computer Scienc@erlin, Germany: Springer-
Finally, a prototype of a simulation tool with graphical _. Verlag, 1994, pp. 377-396.

. . . e . 25] M. Baldassari and G. Bruno, “PROTOB: An object oriented method-
display and animation facilities has been illustrated. The " gjogy for developing discrete event dynamic systen@gmput. Lan-

prototype has been implemented on top of a known knowled?z%] guages vol. 16, no. 1, pp. 39-63, 1991.
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