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Knowledge Representation-Oriented Nets
for Discrete Event System Applications

Pedro R. Muro-Medrano, José A. Bãnares, and José Luis Villarroel

Abstract— This paper presents knowledge representation-
oriented nets (KRON), a knowledge representation schema
for discrete event systems (DES’s). KRON enables the
representation and use of a variety of knowledge about a DES
static structure and its dynamic states and behavior. It is based
on the integration of high-level Petri nets with frame-based
representation techniques and follows the object-oriented
paradigm. The main objective considered in its definition is
to obtain a comprehensive and powerful representation model
for data and control of DES’s. The use of the DES behavioral
knowledge is governed by a control mechanism stored in a
separate inference engine. KRON provides an efficient execution
mechanism to make the models evolve. This is an adaptation of
the RETE matching algorithm in order to deal with the features
provided by high-level Petri nets and it takes advantage of its
integration with a frame/object-oriented representation schema.
Moreover, KRON facilitates dealing with decision points in
the execution of nondeterministic models. A prototype of a
simulation tool with graphical display and animation facilities
has been implemented for KRON and it has been used in several
case studies in the manufacturing systems domain.

I. INTRODUCTION

T HIS paper deals with a knowledge representation schema
for discrete event system(DES) models. DES’s are dy-

namic systems that change their state at the occurrence of
discrete events. In general, the state ofDES modelshas logical
or symbolic, rather than numerical values, and the events
may also be described in nonnumerical terms [1]. Complex
DES’s are composed of elements that evolve concurrently and
asynchronously. The elements of a DES interact with one
other by means of synchronization and information passing
mechanisms.

There are several formalisms used to build models of
complex DES including those based onPetri nets, calculus
of communicating systems, andcommunicating sequential pro-
cesses. Petri nets have been recognized as a suitable means
to describe such complex DES. They allow formal analysis,
graphic representation, and the execution of the system models
[2]. Additionally, it is possible to fill the gap between the
system modeling and implementation phases by means of
automatic code generation techniques [3]. However, the use
of ordinary Petri nets in the modeling of large complex DES’s
can lead to models of unmanageable size. This drawback is
reduced by using high-level Petri nets (HLPN’s) [4] (e.g.,

Manuscript received January 19, 1996; revised November 10, 1996 and
May 25, 1997. This work was supported in part by grants from the Spanish
Interministerial Comission of Science and Technology (CICYT) under Project
TAP95-0574 and the University of Zaragoza under Project 284-63.

The authors are with the Departamento de Informática e Ingenierı́a de
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colored Petri nets or predicate/transition nets) which provide
more compact and manageable descriptions.

Several researchers have established that the high-level Petri
net formalism is still lacking in two main aspects.

1) Methodological aspects: Several methodologies can be
adopted during the system model design process using
high-level Petri nets. However, this formalism lacks
appropriate features to explicitly support concepts from
modern systems engineering such as modularity, encap-
sulation, top-down and bottom-up designs, data abstrac-
tion, specialization, and inheritance.

2) Data representation aspects: In the majority of practical
applications, it is necessary to describe aspects that are
not related to the system dynamics. Moreover, HLPN’s
are not powerful enough to describe complex systems
(such as information or manufacturing systems), which
are characterized by having many different attributes
and services and complex relations between elements.
To conclude, Petri nets are good process-oriented for-
malisms, but they are not data-oriented.

To deal with these deficiencies, the main approach adopted
has been the integration of the high-level Petri net formalism
with other data representation paradigms such as abstract data
types, object-oriented concepts, or entity relationship models.
There are many integrated models in technical literature, which
are analyzed in Section II of this paper. It can be established
that there has been a global evolution in integration strategies.
This evolution leads to a fully integration of Petri nets and
objects. The proposed integration model follows this last
approach.

This paper is devoted to illustrate the main features involved
in knowledge representation-oriented nets (KRON). Two main
objectives were considered in its definition: 1) to obtain an
overall and powerful representation model for data and control
and 2) to incorporate appropriate features in order to facilitate
methodological aspects.

KRON is based on the integration of high-level Petri nets
with the frame/object-oriented paradigm. KRON increases the
features generally supported by object and frame-oriented
languages in the following ways.

• It provides a set of semantic constructs implementing the
high-level Petri net formalism. HLPN’s provide the mech-
anism to describe the internal behavior of the dynamic
entities and the interaction between them.

• It allows the description of the collective behavior of
objects with no necessity for a low-level communication
model.
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• KRON effectively represents this behavior in a declara-
tive rather than procedural form.

• It provides an interpreter of the underlying HLPN, which
is based on an efficient matching tool that makes effective
use of the underlying data structures.

The paper is organized as follows. First, a brief survey
of similar approaches is presented in Section II. Section III
presents the KRON constructs that support the HLPN for-
malism. Section IV introduces the mechanism to support the
connection of dynamic entities. The execution model, which
is supported by the HLPN underlying the model, is presented
in Section V (KRON could be seen as a language that al-
lows the implementation of the HLPN formalism). Section VI
illustrates some modeling restrictions to be considered in
order to make a correct implementation. Section VII shows
the KRON development environment used to create KRON
models facilitated by graphical and animation capabilities.
Finally, conclusions and future works are presented.

II. PETRI NET INTEGRATED MODELS

A Petri net is a graph with two kinds of nodes,places
and transitions, which represent respectively conditions and
actions. Tokens evolving through the places complete the
state representation. On the other hand, the execution of
a particular activity generally requires the satisfaction of
some preconditions in the system state; whereas the activity
execution implies additional postconditions in the system state.
In a Petri net, preconditions are specified by those arcs going
from places to transitions whereas postconditions are specified
by arcs going from transitions to places. Transitions whose
preconditions are satisfied are enabled and may be fired. A
transition firing implies removing the enabling tokens from
their previous places, and putting tokens in posterior places.

A high-level Petri net is a Petri net whose tokens carry
information that may be represented by data structures. In a
HLPN, arcs representing preconditions are labeled by expres-
sions which identify states defined by the value of tokens;
arcs representing postconditions are labeled by expressions
which define state changes by means of the modification of the
value of tokens. In this way, HLPN’s provide a more concise
behavior representation than ordinary Petri nets.

Many integrations of Petri nets with different paradigms can
be found in technical literature. These may be split into three
main groups:

1) extension of Petri nets with primitives to support
methodological aspects (modularity, top-down and
bottom-up design);

2) integration of Petri nets with algebraic specifications;
3) integration of Petri nets with the frame/object paradigm.

Several workshops about the integration of Petri nets and
objects are held regularly as part of prestigious international
conferences; this is proof of the growing interest in this topic.

One HLPN extension belonging to the first group is called
hierarchical colored Petri net (HCPN). HCPN’s [5] provide
a set of constructs to support modularity aspects. The idea
behind HCPN’s is to allow the construction of a large model
by combining a number of small HLPN’s into a larger net, and

different structuring tools are proposed with this purpose. Pos-
terior proposals extending HLPN’s with structuring constructs
can be found in [6] and [7].

The presentation of the most representative works on in-
tegration with algebraic specifications (second group) can be
briefly summarized as follows.

• Algebraic nets [8], many-sorted high-level nets [9], and
Petri nets with structured tokens [10] are a result of
the integration of HLPN’s (used to describe the control
structure of the system) and algebraic specifications (used
to describe the data structure). The main objective is to
expand the net formalism with an explicit abstraction
mechanism and a description formalism used for the
data structures. Algebraic specifications provide a suitable
formalism for data representation which is independent of
a concrete programming language. However, there is no
much emphasis on the methodological aspects.

• OBJSA nets [11] are also based on algebraic speci-
fications and introduce modularity in Petri nets. The
objective is to allow data abstraction and introduce net
modularity. The algebraic Petri net is constructed over
the OBJ2 abstract data type language. The formalism is
increased by means of a building methodology based on
transition synchronization. However, the modeling power
is affected by the restriction of net model onsuperposed
automata nets. This model has been revised in [12] in
order to introduce object orientation and inheritance. In
the same way, PrE-nets with algebraic specifications [13]
(SEmiGrAphical Specification language, or SEGRAS),
which were defined before algebraic nets, were formalized
introducing modularity into Petri nets. However, the mod-
eling power is also affected by the restriction on PrE-nets
[14], which only allows single individual objects.

• These previous works have been the basis of many others,
most of them considering object-oriented aspects. Concur-
rent object-oriented Petri nets (CO-OPN) defined in [15]
are an example of that work. The CO-OPN formalism
extends algebraic nets with modular features, which are
carried out by introducing parameterized transitions (in
order to cope with data transmission) and synchronization
mechanisms. A system is composed of objects, whose
behavior is defined by an algebraic net, that communicate
by transition synchronization. In CO-OPN, a method is an
externally visible transition in opposition to the internal
transition describing internal behavior.

Previous approaches are based on algebraic specifications.
We consider that approaches based on a frame/object approach
can be closer to human conceptual thinking than the ones based
on algebraic specifications. What is required is a conceptual
model which will enable engineers and computer scientists to
describe domain concepts in a more intuitive way, and which
may also be understandable by users.

• In [16], the authors emphasize that the current Petri net
formalism does not support a real data-oriented view of
the system. Based on that, a new augmented model is
proposed: object-oriented net (OONET) which combines
an object-oriented data model, called L2, with high-level
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Petri nets. The object-oriented paradigm is considered
in data descriptions, but not in modeling the control
structure. Thus, rule enabling depends on the presence
of tokens (and their time-stamps), but not on the value of
the tokens. Objects are considered to be passive without
message passing. With the same goal of increasing the
data modeling power, in [17] high-level Petri nets are
integrated with the entity–relationship model to obtain the
EER formalism. This model is revised in [18] incorporat-
ing object-oriented concepts to increase expressiveness in
data modeling. However, this approach is not extended
to the process structure in order to provide an overall
modeling framework. Finally, a second revision is done
in [19]. In this last piece of work the internal behavior of
each object is described by means of a Petri net (O-net).
To obtain the global process structure partial nets are
synchronized by another Petri net, the P-net. This P-net
is not included in the object structure.

• Hierarchical object-oriented design (HOOD) nets [20],
[21] integrate HOOD with Petri nets. The result is a model
which is control-oriented. The object-oriented methodol-
ogy is not fully extended to data modeling.

• Object Petri nets (PNO), which have been widely referred
to in technical literature, were defined in [22] as high-
level Petri nets with data structures. Their objective is to
incorporate the data modeling and updating into the net
model by means of frame-like data structures. In the first
version, few methodological aspects were considered in
the overall system modeling. Starting from this seminal
work, in [23] HOOD/PNO is proposed as a software
engineering methodology that integrates PNO with the
HOOD methodology. In [24] two more extensions to PNO
were introduced: communicative and cooperative nets.
They enable the modeling of a system as a collection of
nets that encapsulate their behavior while interacting by
means of message sending and the client/server protocol.
Although a primary motivation for Sibertin’s introduction
PNO was to integrate the information model with Petri
nets (where data have an effect on behavior), most of the
subsequent work on PNO has focused on the behavioral
aspects rather than on structural representation issues.

• Reference [25] presents PROTOB, an object-oriented
language and methodology based on PROT nets [26].
In this object-oriented approach, objects communicate by
message passing and a hierarchical object decomposition
like HOOD is allowed. However neither inheritance nor
data representation aspects are considered.

• LOOPN++ [27] has mainly been used to describe network
protocols. LOOPN is a textual language that supports
object-oriented structuring into HLPN’s. The language
has a formal semantics which makes it possible to trans-
form object Petri nets (OP-nets) into the simpler HLPN
formalism. However, as it has been pointed out by the
author, there is not a precise relation between OP-nets
and the LOOPN++ language.

As the reader can see, there are many integrated models.
It can be established as a conclusion that all these integration
works have evolved in the same direction to obtain a full

integration of Petri nets and objects. As has been pointed out
in [28], there are two approaches to the integration of Petri
nets and object-oriented concepts: objects inside Petri nets
versus Petri nets inside objects. However, the approach based
on the integration of objects inside Petri nets (e.g., object Petri
nets) has evolved to incorporate also the second one. Most of
the previous approaches concentrate on providing structuring
tools in compliance with software engineering principles, by
enforcing constraints that may result in a loss of freedom
and flexibility. Most of them also extend the formalism of
HLPN’s. However, there is a great scope for further work
in tailoring analysis techniques to extended HLPN’s. The
integration model presented in this paper provides a full
integration of HLPN’s and the object model, and it does not
extend the HLPN formalism.

III. KRON CONSTRUCTS

Knowledge representation of DES’s must involve the repre-
sentation of information related to its dynamic behavior as well
as more static information. From a conceptual point of view,
the representation of a KRON model is based on semantic net-
works, whereas a frame implementation perspective has been
adopted for its programming. In this programming context,
the representation is structured around a set of conceptual
entities with associated descriptions and interconnected by
various kinds of associative links. However, in frame-based
representations, little attention has been paid to describing the
coordination between objects in order to achieve collective
behavior. The application of frame/object-based languages
to the modeling of complex dynamic systems, has certain
inconveniences due to the lack of a formalism to specify its
dynamic behavior (concerning both, the states of the objects
and the causal relationships between states and actions).

In addition to the programming features supported by
frame/object-oriented languages, our knowledge representation
schema includes a set of primitives implementing a high-
level Petri net based formalism. Fig. 1 illustrates the frame
hierarchy that provides the conceptual entities that support the
construction of KRON models. The KRON hierarchy can be
decomposed into three important groups.

1) Net objects: Dynamic entities in KRON are descen-
dants of a specialized object calleddynamic object. A
dynamic object centralizes all the information related
to a dynamic entity (abstract or real), and it is the
repository of information about the entity states and
activities. The behavioral description of adynamic
object class is represented by a HLPN. The state will
be mapped in a combination of HLPN places and
structured tokens, whereas the activities that produce
state changes will be mapped in HLPN transitions. The
constitutive elements of the structure of a HLPN are
represented by individual concepts and dedicated ob-
ject slots (Transitions, activity slots, andstate slots),
which are aggregated or composed indynamic objects
to represent the following behavior.

• The state of adynamic entity is represented by a
set of state slots. To eachstate slot corresponds
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a single place of the HLPN. State information in a
HLPN is represented by its marking, this means the
places and the tokens located in the places. Tokens
which evolve by a HLPN are not mapped onto
specialized objects in KRON. Any entity evolving
throughstate slots plays the role of atoken.

• Activities producing state changes in adynamic
object are represented bytransitions, and they are
equivalent to the transitions of a HLPN.Transitions
that represent activities related to the samedynamic
object are located in itsactivity slots . The
interface of a KRON dynamic object is a subset
of activity slots that hold transitions representing
activities that must be carried out in cooperation
with other dynamic objects (see Section IV). In
this way,transitions also provide information about
the set of applicable services for the current state.

Finally, HLPN’s ofdynamic objects themselves can be
aggregated to create more complex nets in a high-level
structure calledmodel, which describes the collective
behavior.

2) Relations: Relations hold the information of interde-
pendent KRON objects. KRON allows the definition
of relations as an important concept at the same level
as classes or objects. Generic relations are defined as
a specialization ofrelation-object. When a relation is
defined between two classes, a slot is created in the first
class with the name of the relation, and another slot is
created in the second class with the name of the inverse
relation. Demons attached to these slots are responsible
for making automatic updatings of direct-inverse rela-
tions. From the HLPN point of view, relations make
possible the combination of objects in more complex
data structures which represent tokens. KRON also
provides specific relations related to the description of
the following dynamic behavior:

• net relations support HLPN arcs and expressions
labeling them, and are used to specify connections
betweenstate slots and transitions. The informa-
tion about net relations is stored intransitions.

• synchronization relations provide a simple way to
specify interconnection between dynamic entities,
which is done by means of the synchronization of
activities in theactivity slots that constitute the
interfaces ofdynamic objects.

3) Control objects: These objects provide the mechanisms
and policies used to implement the evolution rules of the
underlying HLPN (token playerin Petri net terminology
and inference enginein the knowledge representation
terminology). The search for enabled transitions is car-
ried out by an efficient matching algorithm.

A KRON model can be not fully deterministic, that is,
there exist points in which decisions have to be taken in
order to establish the model evolution. For the selection
phase, transitions are grouped intoconflicts by inspect-
ing the net structure, and each one is provided with a

Fig. 1. KRON hierarchy.

particularcontrol policy. Conflicts may also be related
in order to provide them with acontrol policy. Conflicts
enable us to establish a simple interface between the
model and a decision making system.

The interpretation of amodel is carried out by the
control-mechanism, which applies the corresponding
control-policy to eachconflict located in themodel.

The rest of this section is devoted to provide more details
about state and activity representations. Some issues about
dynamic object classes, instances, and inheritance will be
described in the following sections.

A. State Representation

In order to illustrate the representation schema used to
design dynamic objects, let us focus on a representative
entity from a manufacturing system application which is called
transformation-resource 21 . This object holds the
prototypical knowledge about a generic transformation re-
source which is instantiated to collect its particular features.
It has severalstate slots representing its overall state (see
Fig. 2). Available-capacity represents the capacity to
process different parts at the same time, whereasloaded,
inprocess, and unload-ready identify different sub-
states when part or its overall capacity is being used in
processing products.

Objects that evolve through the underlying net of adynamic
object have a dynamic relation withstate slots calledmark-
ing relation, which defines the entity state (for example, as
can be deduced from Fig. 2, productpart 1 has a marking
relation with state slotloaded ).

Each place in a HLPN has an associated set of possible
tokens. In the same way, eachstate slot has a constraint
(valueclass metaknowledge) associated to the class of objects
(tokens) that it can contain. In the example,available-
capacity may hold neutral tokens (they can also be
seen as simple integer values, because their identity and slots
are not considered). However,Loaded, inprocess, and
unload-ready may hold product s, and the identity of
instances in these places is considered in the state represen-
tation. A product instance inloading denotes that it is
loaded and ready to be processed, ininprocess denotes that
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(a) (b)

Fig. 2. Transformation-Resource : (a) textual state description and
(b) graphical state specification.

the product is being processed, and inunloading that the
product has been processed and ready to be unloaded.

In KRON, token slots are taken into account in order to
complete the state representation. This means that the system
state is defined not only by the marking relations, but also
by the token slots that are relevant for that state. Structured
tokens allow KRON to benefit from some HLPN advantages
like the aggregation of dynamic information to obtain more
concise models, maintaining at the same time the power of
using relations and its integration with the rest of the system
code.

To illustrate the representation power supported by this
relational construction of tokens, let us increase the complexity
of the example. The processing of productpart 1
is not only performed in machinetransformation-
resource 21 but that its complete processing is performed
by means of a sequence of operations in different ma-
chines. A good designer would include, for example (see
Fig. 3), a new object classoperation with information
about several operation features and related operations
(next-operation and previous-operation ). Fig. 3
illustrates graphically howpart 1 (and all products of
type product ) follows a sequence of three operations
(milling 23, screwing 12, and storage 7).
This relational information is managed by the application
from various possible points of view, other than its token
perspective.

B. Activity Representation

From the data structure point of view, atransition holds
descriptions such as specialization relation, membership of
its dynamic object, procedural information attached to the
activity, pre and postconditions, actions produced by activity
execution, etc.

From a discrete event system perspective,transitions carry
out the specification and semantics of HLPN transitions. Petri
net arc information is supported in KRON bynet-relations
represented by two remarkable slots oftransitions: Relations
from state slots to transition objects working as enabling
conditions are in thepre-net-relations slot, and relations from
transition objects to state slots working as causal relations
are in thepost-net-relations slot.

Fig. 3. Token and relation representations.

On the other hand, from a knowledge representation per-
spective, information about activities can be considered as
declarative knowledge in the “if/then” rule style (the similari-
ties between HLPN transitions and rules in rule based systems
have been pointed out in several works [29]). The only differ-
ence is that in rule-based languages the enabling conditions on
the left hand side of the rule (lhs), are clearly separated from
the causal conditions on the right hand side (rhs). Nevertheless,
the execution of a transition implies removing the enabling
tokens from the input places and puttingtokens in the output
places according to thepost-net-relations. In this sense,pre-
net-relations play the role of thelhs as enabling conditions,
and bothpre-net-relations and post-net-relations play the
role of the rhs as causal relations. The integration of rule-
like knowledge in a frame based representation schema is
common to most knowledge engineering environments, see for
example KEE [30], LOOPS [31], and KnowledgeCraft [32].
Some advantages of such integration are described in [33] and
[34]. The rest of this section is devoted to explain how several
transition features are represented and used in KRON.

Expressions labeling the arcs are represented in KRON
as arc expressions in pre- and post-conditions. Anarc
expression is a specification of restrictions on objects. These
restrictions are represented by a list of component pairs: the
first component is the specification of a slot name or the string
unit.name denoting an object name; the second component,
composed by one or two elements, is a partial pattern to match
the slot value, it can be a variable, a specific constant value,
a function or expression or anotherarc expression.

Following with the behavior representation of the
Transformation-resource 21 object, the activity
slots start-process, end-process, begin-
operation, and end-operation , point to the
correspondingtransitions that represent activities producing
state changes. To illustrate the internal structure of a
typical transition, let us focus on a transition instance
from the Transformation-resource 21 object,
which is shown in Figs. 4 and 5 and calledbegin-
operation 21 . The value in itspre-net-relations
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Fig. 4. Description of Transformation-resource #21 .

Fig. 5. Transitions ofTransformation-resource #21 .

slot is: (Transformation-resource 21 Loaded
(unit.name prod )) .

The first two elements identify thestate slot Loaded in the
dynamic object Transformation-resource 21 . The
third element represents thearc expression (unit.name
prod ) which is labeling the arc.

KRON variables are identified by angle brackets (e.g.,
prod ). As it is general in rule based systems, variables play

a double role:

Specify flow conditions: Arc expressions in the precon-
ditions are interpreted as patterns that must be matched.
They identify a token that must be in aplace slot for
a transition to be enabled. For example, the expression
(unit.name prod operation op ) defines a
pattern that matches all tokens having some value in the slot
operation . There will be a binding between the variable
prod and the matched value with slot namename, and

there will be another binding betweenop and the values
in its slot operation . Additionally, these bindings can
establish equality constraints on otherarc expressions of
the sametransition with the same variable names.
Specify data flow: Values bound to variables in precondi-
tions can be transferred to postconditions. Additionally,arc
expressions in postconditions can specify modifications in
the transferred data. Information of bound variables is also
used to update slot values of the tokens involved in a firing.

Some particular features may be used inarc expressions to
increase its expressiveness:

• An arc expression may appear as the second component
of anotherarc expression. This is a pattern to match
with the objects which are stored in the slot. For ex-
ample:(unit.name prod current-operation
(next-operation next-op ))

In this case next-op is bound to the object that is
in the next-operation slot of the object stored in
the current-operation slot of the object bound to
prod .

• To facilitate an incremental model design, KRON allows
the use of incomplete transitions whose missing vari-
ables in preconditions must be provided by transition
synchronization (see Section IV). These variables play
the role of parameters of the services provided by the
objects. For example, the activitiesload and unload
of Transformation-resource 21 constitute its
interface, and they have the parameterprod .

• The keyword NULL may appear in postconditions.
NULL deletes all values from the slot. For example,
(unit.name prod current-operation NULL
next-op ) , removes all values from slotcurrent-

operation before adding the new value bound to
next-op . Additionally, a slot value can be replaced

by another value using a list withNULL and the
removed value. For example,(unit.name prod
operation (NULL op ) next-op ) removes the
value bound to op from slot operation of object
prod , then it adds the value bound tonext-op to

this slot.

Additionally, eachtransition has apredicate associated.
The predicate imposes a logical constraint on the transition
enabling. It is a Boolean function which can only contain
those variables that are already in the expressions of the arcs
connected to the transitions. The predicate is supposed to be
true by default.

Sometimes it is useful to execute some action (execution of
some particular subprogram). This is the purpose of a transition
method calledaction . This method is called each time the
transition is fired. The method receives the bindings of the
transition variables as a parameter.

C. Instances, Classes and Inheritance inDynamic Objects

The purpose of previous subsections was to explain how
the dynamic behavior of particular instances is described
in KRON. However, as it is typical in object-oriented sys-
tems, the prototypical knowledge of thetransformation-
resource 21 behavior is inherited from its ancestors; an
instance is only the last link on the inheritance tree. In this
section we will focus on the use of inheritance as a mechanism
to share code and representation.

Object-oriented modeling starts by creating a hierarchy of
classes, from more generic to more specialized, whose ele-
ments will be further instantiated to build a particular system
model. Frame based languages make emphasis on inheritance
issues and they provide not only support for traditional slots
and method inheritance, but also allow the programmers the
specification of additional types of inheritance (overriding,
adding, unioning, and wrappering).
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The construction of the class hierarchy is based on a
classification process. In our working context of discrete event
system domain, entities with similar state space and behavior
are grouped defining a hierarchy ofdynamic object classes.
A dynamic object class is a template to construct a composed
object, whose instantiation implies the instantiation of the
HLPN structure that describes its behavior. All instances of a
dynamic object class inherit the same Petri net with the same
initial marking. Following the same process,transitions with
similar structure and behavior are classified in a hierarchy tree
of transition classes. Therefore, the behavior of a child class
is obtained from the inherited Petri net by adding newtransi-
tions andstate slots, or providing more specific details about
them. For example, inheritedstate slots may be specialized
with additional restrictions on the tokens they can hold.

The creation of thetransition hierarchy requires more
attention. Thus, a child transition class may be specialized
in the following different ways.

Adding enabling conditions:The inheritance type of the
pre-net-relations and predicate slots is union.
This means that their values are derived by theand com-
position of the values that are in the subclass slot and
the inherited values from its superclasses. Therefore, the
net enabling conditions of atransition class is restricted
by defining new values in thepre-net-relation slot of a
transition subclass. Additional enabling conditions may be
imposed on atransition class by adding new values to the
predicate slot.
Adding new actions:The inheritance type of thepost-
net-relations andaction slots is alsounion. When
the transition is firedpre-net-relations andpost-
net-relations imply the modification of the respective
state slot values. Therefore, new actions may be defined
by adding newpre/post-net-relations values to
a transition subclass. Atransition firing also implies the
execution of theaction method. Theaction method may
be specialized in a childtransition class by wrapping code
before, after or around the inherited code or overriding
it. Moreover, the code of action methods implies the ex-
ecution ofdynamic object methods. Therefore, the action
method can be indirectly specialized by the specialization
of dynamic object methods.

In this design context, the construction of theTransfor -
mation-resource , whose instanceTransformation-
resource 21 has been shown in previous examples, does
not start from scratch, but as a specialization of another class:
Manufacturing-resource . The Manufacturing-
resource class represents the behavior of a generic
manufacturing resource. The responsibility of this abstract
entity is to perform some process on some product (mod-
ification, transport, storage, etc.). The underlying Petri net
of Manufacturing-resource specifies that a generic
manufacturing resource has a limited capacity that must be
available to perform its process and that the process starts
with a load action and finishes with an unload action.

The Transformation-resource class is built from
Manufacturing-resource . As it is shown in Figs. 6

Fig. 6. Template modification ofdynamic object classes.

Fig. 7. Behavior modification ofdynamic object classes.

and 7, theTransformation-resource class adds two
actions,begin-operation andend-operation , which
describe respectively the beginning and end of the transfor-
mation performed on the product. It also defines substates
of products inUsed-capacity : Loaded, Inprocess,
and Unload-ready .

Figs. 6, 7, and 8 provide a better understanding of thetran-
sition inheritance in KRON and its use bydynamic objects.
The load action of a Manufacturing-resource is
specialized intransformation-resource by overriding
the load slot value withload-tr , which is a child ofload
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Fig. 8. Template modification oftransition classes.

transition. load-tr specializes the load action specifying
that loaded products will be placed inloaded state slot.
In the same way, theunload transition is specialized by
overriding theunload slot with its unload-tr child.

A transition instance is never created directly, but only
through the instantiation of itsdynamic object. Transition
classes inactivity slots are instantiated and replaced by their
instances. An important feature of KRON is that the represen-
tation of an activity that is carried out in cooperation among
different entities, is collected into only onetransition
instance. In this case, thestate slots of pre- and post-
conditions may belong to differentdynamic objects. For this
reason atransition instance inherits all slot values from the
transition class, butpre/post-net-relations add to
each inherited net relation a reference to thedynamic object
instance.

A newdynamic object class can also be created bymultiple
inheritance. In this case, the subclass inherits several separated
nets from their superclasses, which can be joined to build a
more complex one. The connection can be made by adding
transitions and places that model the control flow interaction
between inherited nets. Multiple inheritance facilitates compo-
sition of incomplete representation behavior (virtual classes)
during the model development. This means that the Petri net
underlying adynamic object class may be incomplete, and
therefore this class should be refined to complete the behavior
representation.

Finally, it is important to note that some problems have been
detected with the integration of concurrency and inheritance.
In concurrent object-oriented languages, it is calledsynchro-
nization codethe code that selects the set of services that a
concurrent object can execute and that depends on its state;
that is, the enabling conditions of transition objects in KRON
terms. The reuse of the synchronization code in concurrent
object-oriented languages has been considered difficult due
to inheritance anomaly: synchronization code cannot be
effectively inherited without nontrivial class redefinitions [35].
Matsuoka and Yonezawa identify three kinds of inheritance
anomaly.

1) State partitioning anomalyoccurs when the subclass
needs to make a partition of the set of states the
superclass can have.

2) History only sensitiveness of states, appears when the
methods in a parent class must be modified because the
application of a method in a subclass depends on the

history information, which does not manifest itself in
the values of the inherited instance variables.

3) State modification anomaly, appears when the definition
of a subclass requires the modification of inherited
enabling conditions to account for a new action.

KRON mitigates some of the effects of the inheritance
anomaly. A KRON model allows the appropriate separation
of the synchronization code (enabling conditions) from the
action (a piece of code) attached to transition objects. It makes
the refinement of actions easier, allowing the inheritance
mechanism to override the two parts separately. On the other
hand, Petri nets have a guard based synchronization schema.
Thus, the state partitioning anomaly pointed out in [35] does
not occur because the addition of new net conditions allows
the differentiation of substates.

IV. DYNAMIC ENTITY CONNECTIONS

The construction of system models in KRON is done incre-
mentally by first, designing isolated entities and then imposing
the interactions between them to compose a bigger subpart of
the system model. From a dynamic perspective, the behavior
of an entity is represented by a HLPN underlying adynamic
object. The overall dynamic model will be homogeneous if the
dynamic interactions betweendynamic objects are described
in the same terms as the internal behavior of objects. This
means that if the interactions are described in terms of places,
transitions and arcs, the behavioral model of the system will
be a HLPN and the advantages of using this formal view can
be fully assumed. In KRON, the representation of interactions
betweendynamic objects becomes the same problem as the
HLPN connections.

HLPN’s may be connected by merging transitions or places,
and by means of new arcs [36]. In KRON, transition merging
has been selected as the main mechanism to represent the
interactions betweendynamic objects. The advantages of
this approach will be pointed out at the end of this section.
This approach provides a synchronous communication style
that has been adopted by other works in Petri net integration
as CO-OPN [15] or OBJSA [12]. In this mechanism, an
interaction between two or more objects can be interpreted
as the execution of a joint activity, where each object has
only a partial view of the real activity and its constraints. This
interaction implies the synchronization of the internal behavior
of those objects.

To illustrate the possibilities for dynamic entity connections
we will synchronize some objects designed above with other
auxiliary entities creating a more complex model. Consider,
as an example, a simple manufacturing work cell, composed
of two machines (M 1 and M 2) with input and output
buffers, a random-access input store (IS 1), a random-access
output store (OS 1) and a robot (R 1) for palleting. Fig. 9(a)
shows thedynamic object instances needed before their
connections. (Underlying Petri nets have been simplified and
the arc expressions and marking relation are not illustrated for
simplicity.)

Let us focus on the connections between machineM 1 and
its input buffer IBM 1. Transition unload from IBM 1
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(a) (b)

Fig. 9. Example of normal and bilateral synchronization.

specifies an activity to unload a part stored in the buffer; to
do that, the part must be in the buffer. On the other hand,
transition load from M 1 specifies an activity to load a part
in machineM 1; to do that, it is necessary the availability
of M 1 (specified by its preconditions). In the example, we
want to feedM 1 with the parts fromIBM 1, this means that
there must be some interaction between both activities (in fact,
they could be considered as partial views of the same activity).
This interaction can be represented as the merging of transition
load from M 1 and transitionunload from IBM 1. The
result is a transition that models the transfer of a part from the
buffer to the machine synchronizing the behavior of both.

To support this approach, thedynamic objects interface
in KRON is a set ofactivity slots. Thus, the transitions of
a dynamic object can be internal or interface transitions.
Only the interfacetransitions can be externally synchro-
nized. Connections betweendynamic objects are established
by naming theactivity slots that must be related in some
manner. The synchronization mechanism generates a new
merged transition by multiple inheritance of the originals
(for a complete transition merging, additional mechanisms are
supported in KRON to specify the relations between variables
from different transitions whose names have local scope). The

transition generated by the merging replaces the originals in
all activity slots involved in the synchronization. It allows
the different dynamic objects related by a synchronization to
maintain the same view over a transition after the merging.

Two types of synchronization (by transition merging) have
been designed for KRON.Normal synchronizationsubstitutes
synchronized transitions by a unique transition with all pre
and postconditions of the original ones (this is the case of
the interaction betweenM 1 and IBM 1, which was shown
above and which is illustrated graphically in Fig. 9). However,
a slightly different case arises when a single activity may
be synchronized with several alternative activities, and these
other activities can not be synchronized with one another. This
is the place for abilateral synchronization, which supposes
a replication process. This is the case of the robotR 1 in
the example.R 1 can be used to transport the parts between
buffers and stores. The sameload transition is used to take a
part anywhere, but a different instance must be created for any
buffer or store, which must not be influenced by the others.
The model of the robot must be built as a reusable component
independent of the necessary number of inputs and outputs.
Thus, the robot is modeled with only one input and one output
that will be replied as necessary when the robot is connected
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Fig. 10. A simple KRON net example.

with other resources of the manufacturing plant. The robot
model before synchronization can be seen in Fig. 9(a) whereas
Fig. 9(b) shows the robot model after its synchronization.

Some characteristics of the proposed approach fordynamic
entity synchronization are as follows.

1) Synchronized transitions are handled as a single object
that belongs to cooperative objects. In this way, com-
munication between different entities, from a dynamic
perspective, is supported by the same formalism that
defines the internal dynamic of each object.

2) Transition merging has the advantage of easing the
system analysis, because many properties are preserved
when nets are composed in this way ([37] and [38]
among many others).

3) Synchronized transitions provide a symmetric form of
cooperation by an arbitrary number of entities, and
no direction of communication is intended. Transition
synchronization provides a higher level mechanism to
communicate objects than the classical message passing.
Collective behavior of objects can be described without
an implementation model of communication, and does
not restrict the model to the client–server framework.

4) It may be argued that synchronized transitions violate
the encapsulation, because they have access to the local
state of cooperativedynamic objects. However, a syn-
chronized transition denotes a relation betweendynamic
objects that defines the rules of this violation. As
Rumbaugh points out in [39], a relation is not something
to be hidden, but rather, to be specified abstractly,
without imposing an implementation.

V. THE EXECUTION MODEL

In the previous sections, we explained the different prim-
itives and mechanisms to create models of discrete event
systems in KRON, but we still have to consider how these

models are really executed. The underlying HLPN provides
the behavioral rules for the model evolution which is es-
tablished by transitionfiring. Firstly, the execution model
will be illustrated through an example and then, an efficient
implementation of the execution mechanism will be presented.
This is the software created to simulate the firing of transi-
tions following the theoretical rules imposed by the HLPN
semantics.

Fig. 10 shows an example used to illustrate the execution
model. The net, composed of five places and only one
transition, represents the loading activity for a set of machines.
The expression
(unit.name part machine machine tool
tool ) in the arc from placePARTS to transition

LOAD, allows three different bindings for variables( part
machine tool ) regarding the actual marking:

( part = P1 machine = M1 tool = T1)
( part = P3 machine = M3 tool = T1) and
( part = P11 machine = M2 tool = T5) .

A transition is enabled if there exists aconsistent binding
for its associated variables. This means that alltransition
variables are bound, the bindings from all input arc expressions
are the same and the variable values verify the restrictions
imposed by the predicate associated to the transition. Each of
these consistent bindings defines a differentfiring mode. In the
example shown in Fig. 10, there exists only one firing mode
that is defined by the following consistent binding:( part
= P1 machine = M1 tool = T1) .

A transition firing may occur if thetransition is enabled by
some firing mode. The state change happens when the firing
mode occurs.

It is important to note that HLPN based models can not be
completely deterministic. There exist points in which decisions
must be taken. From the Petri net point of view, this decision
point corresponds to aconflict. A conflict can be created by
just one or several transitions with firing modes that compete
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for the same tokens. A conflict must be solved as a whole.
That means that if two transitions are in conflict with a third
transition they are also in conflict. Aconflict groups transitions
that are in a coupled conflict relation in the net, and associates
a control policy to decide the firing modes that will be fired.
In view of the Petri net structure it is possible to make a
partition of transitions in conflicts automatically. According
to what we have established so far, the execution of a net
follows a conflict-oriented approach.Control policies receive
the firing modes that enable transitions and decide the firing
or firing modes to be executed.

The behavioral rules are supported in KRON by a so-called
control mechanism or interpreter . The control mechanism
interprets the model to make the net evolve. The implementa-
tion is based on the similarities between the inference engine
of a rule based system and the interpretation mechanism of a
HLPN. The proposed technique makes use of an adaptation of
the RETE matching algorithm [40], which is used in rule based
language, such as OPS5 [41], to provide an efficient inference
engine. As in RETE, the main idea is to exploit temporal data
redundancies (coming from the marking that is not changed
during transition firing).

The similarities between Petri nets and rule based systems
have been pointed out in several papers [42]–[45]. A HLPN
can be interpreted as a rule based system in which transitions
have the role of rules and tokens are the working memory
elements. We are interested here in those aspects of this equiv-
alence that are important for the interpretation mechanism.

Rule based systems can be decomposed into three parts:
rule memory, working memory and inference engine. The
rule memory contains declarative information based in pre-
condition/consequence sentences. The working memory (data
memory) contains dynamic data that are compared with the
precondition part of the rules. The individual elements of
the working memory are referred to as the working memory
elements. The rule interpretation mechanism is materialized
by the inference engine. The inference engine executes what
is called a recognize-act cycle [41], which is itself composed
of three main activities.

1) Match: Performs the comparison of the dynamically
changing working memory elements with the precon-
dition part of the rules. If a precondition is satisfied, the
rule is included in the conflict set (the set of executable
rules for the present working memory state). Currently,
the match phase problem is often solved by the RETE
match algorithm [40].

2) Select: Selects one rule from the conflict set.
3) Act: Executes the selected rule according to its conse-

quence part.

The inference engine cycles until no rules are satisfied or
the system is explicitly halted.

Differences in the representation appear because a rule does
not remove the data that enable it in the execution. It forces
the explicit representation of these updatings in the consequent
part of rules.

Differences in the inference engine appear because HLPN’s
provide some features that make its implementation more

specific than the one in general rule-based systems. The control
mechanism of KRON implements a strategy for specializing
the RETE match algorithm so that it is more suitable for HLPN
interpretations; furthermore, the KRON execution model al-
lows executing different firing modes in the same cycle to
preserve the concurrent semantics of HLPN’s.

A. The RETE Algorithm

The RETE match algorithm [40] avoids the brute force ap-
proach taking advantage oftemporal redundancy(persistence
of information in the working memory across the recognize-
act cycle is called temporal redundancy). This is accomplished
by matching only the changed data elements against the rules
rather than repeatedly matching the rules against all the data.
With this purpose, the information about previous matchings
is recorded in a graph structure callednetwork.

The network is composed of a globaltest tree, common for
all rules, and ajoin tree specific for each rule. The test tree
is composed ofone-inputnodes, each of them representing a
test over some attribute. A path between the root node and a
leaf node represents the sequence of tests required by a rule
precondition. The information related to binding consistency
tests is represented by the join tree associated to the rule (join
tree nodes are calledtwo-inputnodes orjoin nodes).

When an element is added to the working memory, a
pointer to the element is introduced in the root of the test
tree and propagated if the test is successful. The working
memory element pointers coming out of the test tree leaves are
introduced in the join tree. Then, the pointers are combined
in tuples and stored in each two-input node. Each tuple
collects the working memory elements allowing a consistent
binding at the corresponding level. A tuple in a final two-input
node points to the working memory elements with which the
associated rule can be applied.

On the other hand, when a working memory element is
removed, the corresponding pointer must be removed from the
nodes of the test tree. The tuples having this pointer must also
be removed from the two-input nodes. When many working
memory elements match the same condition element, removing
a working memory element is expensive. It takes a linear
search to find the particular element to be removed in the list
of pointers for a condition. The RETE test tree and join tree
associated to the transitionLOAD, seen as a rule, is shown in
Fig. 11.

B. Taking Advantage of HLPN Structure

The main differences between HLPN’s and rule based
models in the match phase are related to theworking memory.
A rule based system has just one global working memory for
all rules, whereas a HLPN has its working memory split into
places.

The preconditions of a transition must match only against
the tokens of its input places. This fact makes a place to be
seen as a working memory partition. The main effects on a
RETE network produced by this partition can be established
as follows.
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Fig. 11. RETE network generated from transitionLOAD.

• The root node is split into several nodes, one for each
input place, each one defining itself a local working
memory.

• The test tree of the network is reduced because no class
or place tests are needed. Consider the RETE network
for the transitionLOAD. Each branch has a test over the
token class and a test over the place where the token
is. The place tests can be avoided when it makes use of
the HLPN structure because each condition element has
an input arc implicitly associated. The class test (PART,
MACHINE, or TOOL) can also be avoided because each
place has a set/class of possible tokens associated.

• It can not make use of thestructural similarity [41].
The structural similarity allows the sharing of partial
branches of the test tree by different, but similar, condi-
tion elements. Except in places that are shared by several
transitions, the branches of the test tree come out from
separate root nodes. This fact makes it impossible for
nodes to be shared.

If the structural similarity is not used, the test tree obtained is
a set of separate chains coming out from root nodes. Thus, each
chain can be reduced to only one node representing all tests
and bindings of the corresponding condition element. These
nodes will be calledentrynodes. This is graphically illustrated
by the network shown in Fig. 12. It can also be compared to
the RETE network in Fig. 11.

C. KRON Inference Cycle

The recognition phase is executed when a token is added
or removed from a place. We will illustrate how the pattern
matching phase takes advantage of the partition of working
memory. The phases of selection and execution should take
into account the concurrency represented by the model. It
implies that more than one enabled transition can be fired.

1) Matching Phase:A similar data structure to the RETE
network is generated for each KRON transition. As in a RETE
network, the intermediate results of the matching process are
stored and recalculation can be avoided while no changes

Fig. 12. Network generated fromLOADtransition profiting from the HLPN
structure.

in the allocation of the tokens of the places involved are
made. However, there exists another important aspect to be
considered in the interpretation of HLPN’s. Removing a datum
from the working memory in the RETE match algorithm
implies finding all references to the datum through the RETE
network. In order to find the nodes that have references to
a removed datum, the original RETE algorithm repeats the
process of pattern matching. This source of inefficiency is not
dramatic in rule base systems because this is not an action
that occurs systematically. But it would be unacceptable in
HLPN interpretations. For this reason, in KRON, each set of
bindings is linked with the set of bindings that generates it
by means of consistency tests (their predecessors), and with
their successors. The set of bindings located in entry nodes
do not have predecessors. In this case, a link is set between
the set of bindings and the token that generated it. This highly
related data structure allows a fast tree updating because it
avoids search.

2) Selection Phase:The selection of one rule from the
conflict set is accomplished in rule-based systems applying
concepts such as recency, refraction or specificity (see strate-
gies LEX and MEA from OPS5 language [41]). However,
there are other important issues to be considered in imple-
menting HLPN’s.

a) A HLPN can model concurrence. In each execution
cycle, more than one enabled transition can be fired.

b) The strategies to solve conflicts depend on application,
and the resolution objectives can be different in each
conflict.

In the KRON interpreter, transitions are grouped by con-
flicts, each one having its resolution strategy called control
policy. During the selection, all enabled transitions from a
conflict are considered as a whole, the conflict control policy
is responsible for providing a solution (transitions and firing
modes must be chosen). The KRON interpreter offers a control
policy object library but the user can design new control
policies according to the application domain.
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Fig. 13. Experimental comparison of Classical, RETE and TREAT approach.
Time in seconds corresponds to 300 cycles of a KRON model for the world
blocks.

3) Firing Phase: A transition firing with respect to a firing
mode (pattern of the level) carries out the following steps.

a) The calculation tree is traversed backward from the
consistent binding (firing mode) to the tokens used to
generate it. Each of these tokens is then withdrawn from
the input places and a tree updating is performed in all
the transitions sharing these input places.

b) The piece of code associated to the firing mode is
executed.

c) The tokens specified by the output arcs of the transition
are added to the output places and a tree updating is
performed in all the transitions having these places as
inputs.

4) Efficiency Issues:Classical implementations of HLPN’s
interpreters have emphasized techniques for fast selection of
transitions that may be enabled. In situations with medium
and high marking levels, an approach based on RETE nor-
mally seems more efficient because it avoids recalculations
and it considers also transitions that are completely enabled.
However, McDermott, Newell, and Moore suggested in [46]
that the RETE match algorithm may be inappropriate when
a completely recalculation of firing modes implies smaller
number of operations than the number of operations involved
in keeping the information about the tests performed in each
cycle. The cost of removing a datum from the working memory
and the size of the saved information in the join tree become
the main drawbacks of the original RETE algorithm. Miranker
developed the TREAT algorithm to avoid those kinds of
drawbacks [47]. The TREAT algorithm is similar to RETE but
does not save the result of partial matching between cycles, this
means that it does not use the join tree. The KRON approach
avoids the cost of removing a datum in a different way from
TREAT, because it is done by linking the patterns to their
ancestors and successors.

Fig. 13 illustrates an experimental comparison of three
different interpreters of a KRON model based on

1) classical interpretations of HLPN’s;
2) the RETE;
3) the TREAT approach.

The example model was made using a model of the typical
world block problem [48]. Fig. 13 shows that the KRON
approach based on the RETE algorithm does not suffer the
combinatorial explosion that an increment of the size in
the number of tokens entails. (KRON interpreter has been
implemented in KEE, on top of Common Lisp, running on
a SUN workstation).

VI. RELATIONS TO HLPN’S

The Petri net underlying a KRON model can be considered
as a subset of a HLPN with a special syntax. However,
there still exist restrictions that are introduced to improve
the modeling and simulation capabilities of HLPN’s to solve
practical tasks. The formal analysis of properties was not a
crucial issue in the KRON development. Our approach is
closer to the work presented by Cherkasovaet al. [49], which
combines HLPN’s with modeling by direct programming,
than to works that extend the HLPN formalism. Cherkasova
points out that a straightforward modeling of large systems
by means of nets can result in practically nonexecutable
models due to the intensive testing of firing modes for a
larger number of transitions and the huge number of possible
bindings. For this reason, they proposed using nets only when
necessary, representing the system concurrency, and directly
programming other procedures of searching, matching, sorting,
etc.

Following this pragmatic approach, the HLPN formalism
is not extended, but really, it is constrained to use simpler
expressions. A KRON net differs from HLPN’s (as defined
in [50]) in the following restriction: the number of tokens
added or removed to or from a given place is always the same
for different occurrences, and it is constrained to one-per-arc
condition. It is not an important restriction because more than
one firing mode can be fired in each interpretation cycle. That
means thatconflicts can decide to remove a different number
of tokens according to the definedcontrol-policy.

Another important difference with HLPN’s is introduced
by the integration of HLPN’s with the object model. KRON
tokens are entities, and their attribute values and relationships
are considered in order to describe the system behavior. The
nature of these tokens introduces a property calledubiquity
[22]. Ubiquity concerns the token ability to have several
occurrences in a marking. Formally, a KRON net with ubiquity
is not a correct HLPN because it produces the loss of the
transition scope. Ubiquity produces the following undesirable
effects. 1) It violates the partition and encapsulation of the state
in dynamic objects. Moreover, it hides the way transitions
modify the state because they have unlimited writing access
to all token attributes. 2) Ubiquity is a property irreducible
to algebraic analysis. This problem is not exclusive of the
integration of the object model and Petri nets. The problem
arises in any representation language that allows different
references (object pointers) to the same object. This property,
which is known asdynamic aliasing, makes it difficult to prove
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Fig. 14. Appearance of the KRON editor/animator.

the correctness of a system representation theoretically [51].
KRON allows the modeler to decide whether to avoid ubiquity
in order to prove the correctness of the system representation,
or to model in a more flexible way without to worrying about
the ubiquity problem.

VII. D EVELOPMENT ENVIRONMENT PROTOTYPE

The software development of complex SED’s requires tools
to facilitate the modeling task and to manage a huge volume
of different knowledge. A prototype of a simulation tool with
graphical display and animation facilities has been imple-
mented in KEE [30] running on Sun workstation. KRON is
used as the kernel in the environment and provides a generic
knowledge representation schema.

The user friendly interaction is carried out by a graphic
interface based on menus and windows accessed to through the
mouse. KRON interfaces are implemented upon KEE facilities
to develop graphical interface. KEE provides interfaces to
display a knowledge base organized in an inheritance network,
and allows fast access to all information. Any frame may be
picked out from such a graph, its contents examined, and if
other frames are referred to as slot values, their contents can
be examined as well.

In addition, the graphic module offers a KRON net edi-
tor/animator. It allows a graphical representation of the be-
havior based on the HLPN formalism.Dynamic objects
are represented as bordered Petri nets. As an editor, KRON
constructs may be built, modified, and connected. As an
animator, it can animate the model during its execution.
Animation may be automatic when definedcontrol-policies
solve decision points, or manual when the user interacts

with the animator to solve decision points. Fig. 14 shows the
appearance of the KRON editor/animator.

As an example of application of KRON to a particular kind
of SED’s, a manufacturing-oriented tool has been built using
KRON. Manufacturing intended KRON (MIKRON) provides
specialized concepts for the modeling of manufacturing sys-
tems, such as resources and operations, and it covers tasks
like coordination, scheduling, planning, simulation, etc. [52].
A graphical interface specializing in manufacturing systems
has also been developed.

VIII. C ONCLUSION

In this paper we have presented KRON, a knowledge repre-
sentation schema for DES’s. KRON enables the representation
and use of a variety of knowledge about a DES static structure,
and its dynamic states and behavior. It is based on the
integration of high-level Petri nets with frame based represen-
tation techniques and follows the object-oriented paradigm. In
addition to the features generally supported by object-oriented
languages, a set of primitives implementing the high-level Petri
net formalism is included. HLPN’s provide the mechanism
to describe the internal behavior of dynamic entities and the
interactions between them.

In the representation of discrete event systems, HLPN’s lack
methodological and data representation aspects. To deal with
these deficiencies, the main approach adopted by researchers
has been to increase HLPN’s with other paradigms such as
abstract data types, object-oriented concepts or entity relation-
ship models. From a historical point of view, the work on
integration has evolved to the integration of objects and Petri
nets in two different ways: the use of objects as tokens inside
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a Petri net and the use of Petri nets to represent the internal
behavior of objects. However, the first approach has evolved
to incorporate also the second one. It can be established, as a
conclusion, that the work on integration has evolved to obtain
a fully integration of Petri nets and objects; KRON follows
this approach.

On the other hand, most of the integration approaches
extend the HLPN formalism. The approach adopted does not
extend the HLPN formalism. The frame-based representation
of KRON supports the data and methodological aspects with
no need to extend the HLPN formalism. So, all the advantages
of the use of this formalism can be profited from working with
KRON.

KRON uses inheritance as a mechanism to share code
and representation. The subtyping relationship has not been
considered because there is not a clear choice between the
different notions of subtyping that we have found in the
approaches which integrate Petri nets and objects. KRON
mitigates some of the effects of the inheritance anomaly
allowing the appropriate separation of the synchronization
code (enabling conditions) from the action (a piece of code)
attached to transition objects. On the other hand, Petri nets
have a guard based synchronization schema that eliminates
the state partitioning anomaly.

HLPN’s may be connected by merging transitions or places,
and by new arcs. In KRON, transition merging has been
selected as the main mechanism to represent the interac-
tions between dynamic objects. This approach provides a
synchronous communication style with all its advantages.

The semantics of the behavioral rules is supported in KRON
by a so calledcontrol mechanismor interpreter. The control
mechanism interprets the model to make the net evolve.
The implementation is based on the similarities between the
inference engine of a rule based system and the interpretation
mechanism of a HLPN. The proposed technique makes use of
an adaptation of the RETE matching algorithm, which is used
in OPS5 rule based language to provide an efficient inference
engine. As in RETE, the main idea is to exploit temporal data
redundancies (coming from the marking that is not changed
during transition firing). Our experimental studies have shown
how good this strategy is, which makes the computational
performance remain quite regular even with high net markings.

Finally, a prototype of a simulation tool with graphical
display and animation facilities has been illustrated. The
prototype has been implemented on top of a known knowledge
engineering environment called KEE from Intellicorp.
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José Luis Villarroel was born in Huesca, Spain,
in 1961. He received the Ph.D. degree in indus-
trial–electrical engineering in 1990 from the Uni-
versity of Zaragoza, Spain.

He is currently Associate Professor in the Depart-
ment of Computer Science and Systems Engineer-
ing, University of Zaragoza, where he is in charge
of courses on control and real-time systems. His
research interests include Petri nets, object-oriented
modeling, robotics and real-time systems. In partic-
ular, he is currently working on the application of

time Petri net techniques to the development of real-time systems.



"

'.

1,
'1.'"

¡,-',.

~

t
~

f

,-

<.

~

:. ;itr;;;;;.. ,~.

. .l..
~:~~~._JIÍr'...;..t ~...:; ;..:.: :.:: ;.~~.L, ;..~ ~. .~ ~J..~'-':...._

~
'~~;~~,: ,~

" ~\:t~._

...

"';' .~~.~
... .~).-,.

~~-'

.

"@

~'EEE TRANSACTIONS ON
~:;,

'-".~. ;.. ~) ..:.~,

~~STEMS, Ml\,N,AND
c:tBERNETICS .

.t ~

J;::
"'k

\",
y

,...':"t~
~~ ~-., .

....

PART A: SYSTEMS AND HUMANS
'15. '" " .

_ ~~:~ : 11~:

4puéÚCATlON OFTHE IEEE SYSTEMS, MAN, AND CYBERNErlCS SOCIETV

~; ,
MARCK1998 VOLUME28 NUMBEEr2.

.~~ . ~-

".

-

(ISSN 1083-4427).,ITSHFX

'"
:j.~: ~

~-\.

." i~

,

-,-,.,.~-

PAPERS

Enhancing VideoconferencingUsingSpatially Varying Sensing .A. Basu and K. J. Wiebe 137
A Multilevel Weighted Fuzzy Reasoning Algoritbm for Expert Systems D. S. Yeungand E. C. C. Tsang 149
Integrative Systems: Assessing Requirements and Capabilities for Intra- and Inter-Organizational Contexts .~......

. . . . . .. , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. W. S~ther1and 159

Knowledge Representation-Oriented Nets for Discrete Event System Applications ........................................
.'. P. R. Muro-Medrano, J. A Bañares, and J. L Villarroel 183

Design of Steady-State Behavior of Concurrent Repetitive ProcessFs: An Algebraic Approach ....
. .. .. .. ... .. . . .. :. . .. . .. .. . . . . . . . . . . .. . . . . . . . . . . . .. . . . .. .. M. B. Zaremba.K. J. Jedrzejek, and Z A. Banaszak 199

On the Computation of the Direct Kinematics of Parallel Manipulators Using Polynomial Networks ............... :,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . R. Boudreau, S. Darenfed, and C. M. Gosselin' 213

On Fuzzy Logic Applications for Automatic Control, Supervision, and Fault Diagnosis. . . .. .. . . . . . . . . . . . . . .R. Isermann 221

CORRESPONDENCE

Computer User VerificationUsing Login String Keystroke Dynamics .....................................................
.. .. .. .. . .. .. .. . . .. .. .. .. . . . . . .. .. . . . , .. . J. A. Robinson, V. M. Liang, J. A. M. Chambers, and C. L MacKenzie.

A Learning Algorithm for Improved Hybrid Force Control of Robot Arms . .. . . . . . . .P. Lucibello
Distributed Computation for a Hypercube Network of Sensor-Driven Processors with Communication Delays Induding

Setup lime : D.A. L Piriyakumarand C. S.R. Murthy

236
241

245

.-.~. - . - ~ -. , ._,-..~---~

}


	ieee1.pdf
	ieee2.pdf
	ieee3.pdf



