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Abstract. The aim of this paper is to present a software implementa-
tion technique for High Level Petri Nets. The proposed technique, imple-
mented for a specialized version of HLPN called KRON, is interp"I'eted
and centralized. The approach makes use of the similarities between the
inferenceengineof a rule based system and the interpretation mechanlam '

of a HLPN. It performs an adaptation of the RETE matching algorithm
to deal wlth HLPN Implementations. As In RETE, the main objectlve la
to exploit the data temporal rediíndancy, with this purpose, a RETE-like
data structure Is Implemented. Addltionally, our approaeh benefits from
the partition 'of working memory facllitated by the HLPN. These pecu-
liarities allow the generation of simpler data structures than the ones In
more general production systems such as OPS5.
Keywords: Hlgher-Ievel net models, Rule based systems, Petri net Im-
plementation, Matchlng algorithms.

1 Introd uction

A Petri Net software implementation is a computer program cre{\ted to simulate
the firing of transitions following the theoretical behaviorál rules imposed by the
Petri net semantics. Petri nets implementation techniques can be classified in
ICSV86]: centralized and decentralized implementations. In a centralized imple-
mentation, the full net ia executed by just one aequential task, commonly called
token player. Pieces of code associated to transitions (code can be associated to
transitions to provide operational capabilities) can be executed as parallel tasks
to guarantee the concurrence expressed by the neto In a decentralized implemen-
tation, the overall net is decomposed into subnets (normally, sequential subnets)
and a task is created to execute each subnet. The other main classitication for
software implementations of Petri nets distinguishes interpreted and compiled
implementations. An implementation is interpreted if the net structure and the
ma.:rkingare coditied as data structures. These data structures are used by one
or more tasks called interpreters to make the net evolve. :fhe interpreters do
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not depend on the implementednetoA compiledimplementationis based on the
generation of one or more tasks whose control ftows reproduce the net structure.
No data structures are needed in compiled implementations.

The ,software implementation of High Level Petri Nets (HLPN) has not re-
ceived much attention so far. Its most representative approaches are briefty
stated in the following. ¡BM86]presents a decentralized and compiled implemen-
tation of a subclass of HLPN (PROT nets). A PROT net is partiaIly unfolded and
decomposed into sequential processes that are implemented as a set of communi-
cating Ada tasks. Other representative approach has been stablished in ICSV86],
where a centralized and interpreted implementation of Colored Petri Nets is pro-
posed. One of the main ideas of this work is the extension of representing place
concept to HLPN. Another centralized and interpreted implementation of HLPN
is proposed in ¡Har87], in this case, several interpreters compete to make the net
evolve. The net i8 codified in just one data structure. A highly decentralized
implementation is proposed in IBBM89], each place and transition are imple-
mented as an OCCAM process and the implementation runs on a transputer
based architecture. ¡va90], the closest related work, wiIl be explained later.

The aim of this paper is to present a software implementation approach for
HLPN developed for the K}10N knowledge representation language ((MM90]
and lVil90J).The proposed technique is interpreted and, in principIe, centralized.
However, the basis of this technique can also be used in decentralized implemen-
tations. This technique is based on the similarities between the inference engine
of a rule based system and the interpretation mechanism of a HLPN. In both,
efficiency is an important consideration since rule basad systems and HLPN
based systems, may be expected to exhibit high performance in interactive or
real-time domalns. The proposed HLPN implementation techniqúe makes use
of an adaptation of the RETE matching algorithm ¡For82] which is used in the
OPS5 ¡BFKM85] rule based language. As in RETE, the main idea is to exploit
temporal data redundancies (comming from the marking that is not changed
during transition firing).

The a.dequacy of the RETE match a.lgorithm for software implementations of
HLPN is getting greater interest within the research groups working on PN / Al.
Thus, ¡BE86] and [DB88] adopt OPS5 as the implementation language whereas
¡YU90]and IVB90]provide a more in-depth knowledge about the use ofthe OPS5
matching strategy (RETE) to deal with HLPN software implementations. The
paper of Valette and col. provides a pretty nice conceptual and pedagogical view
for the specific use of RETE for the matching process. The approach presented
here. goes further in these ideas, which have been refined with the feedback of
our implementation experience. We propose a strategy to specialize the RETE
match algorithm to be more suitaQle for HLPN spftware implementations. A
specific implcmentation is proposed and some aspects, as the reduction of test
tree,'8.J:e .treated with more d.eep. Some details, which are interesting from the
softwa!:,epoint of view (mainly related with data structures), are also considered.

The rest of the paper is structured as foIlows:In section 2 rule based systems
and its interpretation mechanism are explained. Additionally, the matching pro-
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cessand the RETE match algorithm are illustrated in more detail. In section 3,a
special class of high level Petri nets (KRON nets) and its relationship with rule
based systems are briefly presented. Software issues involved in the KRON inter-
preter and the RETE influences are considered in section 4. The advantages and
limitations of the proposed approach are analyzed in section 5. Finally, section
6 collects some conclusions of the work.

1. Match: Performs the comparison of the dynamically changing working mem-
ory elements to the precondition part of the rules. If a precondition is sat-
isfied, the rule is included in the conflict set (the set of executable rules for
the present working memory state). Currently, the match phase problem is
often solved by the RETE match algorithm ¡For82j.

2. Select: Selects one rule from the conflict setoTwo maln strategies are usually
used depending on the recency of individual condition elements and the
specificity of the precondition (LEX and MEA strategies).

3. Act: Executes the selected rule according to its consequence parto

attribute value of the matched element is created (the variable is bound to the
value it matches). When a specific variable'can be bound to the same value COl'
each. occurrence in the precondition part of the rule, we say that a consistent
binding has been found [BFKM85j.

From the computational point of view, the set of variables of the rule can
be seen as a pattem that must be specified in a consistent way according with
the restrictionS imposed by the preconditions. The calculation of these patterns
can be macle in a step by step manner. At the first level, the possible bindings
related to the first and second preconditions, are establishing resulting in two sets
of patterns partially specified. Next, the consistency of each of the patterns of the
first set must be contrasted for consistency against each one of the second seto
When two patterns are consistent, a new pattem is generated that will hold the
bindings or speciftcations o( both (in general, more speciftc than its predecessors).
Next, the possible bindings with respect the third condition element must be
computed and its consistency must be contrasted against the set of pattems
computed in the previous level. The result will be again another set of patterns
still more specifics. This process goes on until restrictions of the last precondition
are integrated and the set of consistent bindings represented by completely filled
patterns are obtained. The calculation strategy is graphically illustrated by the
binary tree shown in figure 1.

This genera¡ framework is instanciatOO for different match algorithms. Their
maln differences are the calculations they make each cycle and the information
stored to remember previous calculations. In straightforward implementations
there are many redundancies in the matching process which decrease efficiency.
This execution efficiency problem 100to the development of the RETE algorithm
[For82], the TREAT algorithm [Mir86] and other related algorithms (see [Pas92j
or [SPA92] for review). In the following paragraphs we explain RETE, a well-
recognized algorithm which explolts these redundancies, and then we will see
how t~ese ideas can be used to improve the efficiency in high level Petri nets
software implementations.

2 Rule based systems components and rule interpreter
mechanism '

Rule basOOsystems can be decomposOOinto three parts: rule memory, working
memory and inference cngine. The rule memory contains declarative informa-
tion based in preconditionjconsequence sentences. The working memory (data
memory) contains dynamic data that is compared with the precondition part of
the rules. The individual elements of the working memory are referred tó as the
working memory elements. The rule interpretation mechanism is materialized by
the inference engine. The inference engine executes what is called a recognize-act
cycle [BFKM85j which is itself composOOby three maln actiVIties:

The inference engine cycles unti! no rules are satisfied 01'the system is explicitly
haited.

2.1 Matching process.¿

2.2 The RETE algoritm

The RETE match algorithm [For82j, originally implemented in the OPS5 rule-
based programming tool [BFKM85j avoids the brute force approach taking ad-
vantage of temporal redundancy (persistence of information in the working mem-
ory across the recognize-act cycle is called temporal redundancy). This is a,c..
complishOOby matching only the changed data elements against the rules rather
than'repeatedly matching the rules against all the data. With this purpose, the
information about previous matchings is recordOO in a graph structure called
network.

The network is composed by a global test tree, cornmon for all rules, and a join
tree speciftc for each rule. The test tree is composOOby one-input nodes, each of
them representing a test over some attribute. A path between the root node and
a leaf node represents the sequence of tests requirOOby a rule precondition. The
consistent bindings are established following the computation strategy explainOO

The match phase of recognize-act cycle consumes the most time of the rule in-

terpreter mechanism (using conventional approaches the interpreter can spend
more than 90% of this time). To have a better understanding of the computa-
tiona.l complexity involved in this phase we will have a look at the different steps
of the matching process in rule based systems.

Rule preconditions are composed by condition elements. In a condition el-
ement, an attribute name is followed by an expression specifying restrictions
on its value. If the expression specifies a constant value, the condition element
will match only the working memory elements with that value. The expression
can also be a variable, in this case it will match every working memory element
having that attribute. For every match, a binding between the variable and the
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Fig. 1. Graphical view of the gen.eral computation process used. during the match
pha.se.

above (see figure 1). The information of this process is represented by the join
tree as50ciated to the rule (join tree nodes are called two-input nodes).

When a working memory element is added to the working memory, a pointer
to the element is entered in the root of the test tree and propagated in case
the test is successful. The working memory element pointers coming out of the
test tree leaves are entered in the join tree. Then, the pointers are combined
in tuples and stored in each two-input node. Each tuple collects the working
memory elements allowing a consistent binding at the correspoQding level. A
tuple of the root node points to the working memory elements with which the
associated rule .can be applied.

On the other hand, when working memory element is removed, the corre-
sponding pointer must be removed from the test tree root. The tu pIes having
this pointer must be also r~moved from the two-input nodes. When many work-
ing memory elements má:tch the same condition element, removing a working
memory element is expansive. It takes a linear search to find the particular
element to remove in the list of pointers for a condition.

3 High level Petri net/rule based model equivalence

Different versions of high level Petri nets have been proposed in the scientific lit-
erature (see the book of Jensen and Rozenberg [JR91J), we restrict ourselves here
to the approach used in our software implementation, which is called KRON.
KRON (Knowledge Representation Oriented Nets) is a frame based knowledge
representation language for discrete event systems with concurrent behavior. It
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belongs to the object orlented programming paradigm and incorporates a spe-
cialization of the color Petri net formalism for the representation of the dynamic

aspects. The read~r is referred to [MM90]and [Vil90]for more theoretical bases.
KRON provides a set of classes of specialized objects and primitives for the

construction of a system model where the dynamic behavior is defined by an
underlying HLPN that we will call in the sequel KRON nets' Given the scope
of this paper, we will briefly introduce KRON through an illustrative example
of a very simple KRON net, which is shown in flgure 2. The net, composed by
five placas and one transition, is representing the load for a set of machines. The
ares are labeled by expressions that are lists of attribute-variable pairs. The set
of aU variables included in the arc expressions is associated to each transition.
Each pair defines possible bindings between a variable and attribute values of
tokens in the related place. For example, arc expression {name <part> ¡ machine
<machine>¡ tool <tool>} in transition LOADallowsthree differentbindings for
variables <part>, <machine> and <tool> regarding to the actual marking:
«part> - P1¡ <machine> - M1¡ <tool> - Ti)
«part> - P3¡ <machine> · M3¡ <tool> · Ti) and
«part> · P11¡ <machine> . M2¡ <tool> . T5).

A transition is enabled if there exists a consistent binding for its associated
variables. This means that all transition variables are bound, the bindings from
all arc expressions are the same and the variable values verify the restrictions
imposed by the predicate associate to the transition. Each of these consistent
bindings defines a different firing mode. In the example shown in figure 2, there
exists only one firing mode that is defined by the following consistent binding:
«part>- P1; <machine> . M1¡ <tool> - Ti).

The similarities between Petri nets and rule based systems have been pointed
out in several papera (BE86j, [DB8S],(VB90], (HLMMM91], [MMEV92]. A HLPN
can be interpreted as a rule based system in which transitions have the role of



38 3\1

rules and tokens are the working memory elements. We are interested here in the,
aspects of this equivalence that are important for the interpretation mechanism.

Given the approach adopted in KRON, the relation between a KRON tran-
sition and a OPS5 rule follows in a very intuitive way. A transition of a KRON
net can be easily interpreted as a rule with variables:

W ORICIIIQ MEMORY

1. The precondition part of a rule-transition is composed by the conditions de-
fined by the input labeled ares. Each input arc expression can be assimilated
to a condition element of a rule.

2. The consequence part collects the marking updates defined by both the input
and the output labeled ares.

To illustrate this equivalence,let us consideragain transition LOADfromfig-
ure 2. This transition can be expressed as a OPS5 rule following the approach
adopted in [BE86]:

(p LOAD
(PART Tname <name> Tmachine <machine> Ttool <tool> Tplace PARTS)
(MACHINETname <machine> Tplace MACHINES)
(TOOLTname <tool> Tplace TOOLS)

lo rI- BUSYw.afJNB1

.

..
...

TecTIoe--------
leal,...

-
(modify <part> Tplace PARTS-IN-PROCESS)
(modify <machine> Tpart-in-process <part> Ttool-in-use <tool>

Tplace BUSY-MACHINES)
(modify <tool> Tplace NIL»

Fig.3. RETE network generated frOIDtransition LOAD.

r

In this approach, tokens (data elements) have a special attribute called
(Tplace) used to specify the place where the tokens are. The RETE test tree
and join tree associated to the rule LOADis shownin figure3.

On the other hand, HLPN provide some features that make ~ts implementa-
tion more speciflc than the one in general rule-based systems. The main differ-
ences are related with the working memory. A rule based system has just one
global working memory for all rules, whereas a HLPN has its working memory
splited in places. The preconditions of a transition only must match against the
tokens (data elements) of its input places. This fact allows a place to be seen as
a working memory parti);ion. The main effects on a RETE network produced by
this partition can be established as follows:

- The root node is splited into several nades, one for each input place, each
one defining itself a local working memory.
The test tree of the network is reduced because no class or place tests are
needed. Consider the OPS5 rule of transition LOAD.Each precondition ele-
ment of this rule has an implicit test over the token class and an explicit test
over the place where the token is located. Place tests can be avoided making
use of the HLPN structure because each condition element has implicitly
associatedan input arc. The class test (PART.MACHINEor TOOL)can also be
avoided because each place has associated a set/class of possible tokens. A11
tokens in a place belong to the same class.

- It can not make use of the structural similarity [BFKM85]. The structural
similarity a.ll9ws the sharing of partial branches of the test tree by different,
but similar, condition elements. Except in places that are shared by several
transitions, the branches of the test tree come out from separate root nodes.
This fact makes impossible for nodes to be shared. .

Ir the structural similarity reminded are not used, the test tree obtained is
a set of separated chains coming out from root nodes. Thus, each chain can be
reduced to only one node representing a11test and bindings of the corresponding
condltion elemento It is graphically illustrated by the network shown in figure 4.
It can also be compared with the RETE network in figure 3.

4 Interpretation mechanism in KRON

4.1 Matching phase

Our approach for the interpretation mechanism makes use of the temporal redun-
dancy features pointed out in the RETE matching'algorithm. With this purpose,
a similar data structure to the RETE network is implemented. Additionally, our
approach beneflts from the partition of working memory provided by the HLPN
that implies the generation of simpler networks than the ones in more general
production systems such as OPS5.
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Fig.4. Network generated from LOADtransition profiting by the HLPN stru;cture.

In the KRON interpreter the tt1ple of variables associated to a transition is
considered a pattern. Similarly to RETE, a tree is generated for each KRON
transition. These trees are composed by two node classes:

1. Entry Nodes. Do not have predecessors and correspond to pattems with
bindings generated by a single input are. Each entry node has a link to the
corresponding input place which is, in fact, a pointer to its local working
memory. These nodes correspond to folded branches of the test tree in a
RETE network.

2. Join Nodes. Correspond to consistent patterns with respect to several input
ares. These nodes are equivalent to the join nodes in a RETE network.

The tree is organized into levels:

- LEVEL 1: Two entry nodes corresponding to the patterns of the first and
second input ares (any order is accepted).

- LEVEL i (1< i < n): An entry node corresponding to the i+l input are and
a join node created upon the nodes of level i-1.

- LEVEL n: A join nsxie, which represents the consistent bindings of the tran-
sition.

Calculation is performed in an increasing direction of levels and, inside each
level, from left to right. As in a RETE network the intermediate results of the
ma.tching .process are stored and recalculation can be avoided meanwhile no
changes in the allocation of the tokens of the places involved are made. To do
that, the information about the set of patterns partially specified is stored in
a special data structure. To provide fast accessibility each of these pattems is
linked to its predecessors and successors. The patterns correspondhig to the entry
nodes do not have predecessors. In this case, a link is set between the pattern
and the token that generated it. Figure 5 shows a graphical representation of
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Flg.l5. Link structure for the LOAD network.
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the network, this highly related data structure allows a fast tree update because
it avoidscomputational searches.

Figure 6 shows more details about the link structure developed in our imple-
mentation. To facilitate software development, KRON has been implemented in
KEE (Knowledge Engineering Environment from Intellicorp) which runs on top
of Cornmon Lisp. The interpreter itself has been implemented exclusively us-
ing Cornmon Lisp primitives (Common Lisp is specially attractive to deal with
pointers). The typical Lisp cons cells are used in the figure to describe more
graplÍically the link structure. A cons cell is stood for a box with two point-
ers. The cons c~lls are linked by arrowlike pointers emerging from their right
and left sides. Figure 6.a shows a prototypic tree node that is composed by a
list of pointers: the first one points to the list of patterns, the rest are pointers
to the previous and successor nodes. Figure 6.b shows the data structure for a
pattern composed by: a list of pointers to the previous a~d following patterns
at the sarne and different levels, another pointer points to an association list of
pairs' variable-value (the tuple of partially specified variables of the transition).
Finally, figure 6.c shows the data structure used in the place: the first element
is a Ust of pointers to the entry nodes that pick up the pattems with bindings,
the rest is a list with the links that are needed for each token in the place, such
as the pointers to its generated patterns.

From the data structure point of view, there are two aspects that make
differences between the RETE algorithm and the KRON interpreter. The first
one is that partially specified patterns are stored instead of tuples of pointers
as happens in the RETE algorithm. Another difference is related with the link
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structure between patterns that avoids searches in a node pattern list when an
element must be eliminated.

The data structure created during the matching process is not modified until
a change in the token distribution happens. Two cases must be distinguished:

1. Deleting a tokeno Carries on the elimination of the patterns specified by
this token. The calculation trees of all descending transitions of the place
containing the token are examined, and its successors' patterns deleted.

2. Adding a token. Originates new bindings of the transition variables. Ir the
token has been added in the place corresponding to the i-th input are, a
new pattern or patterns are created in the entry node of the level i-1. The
new pattern causes the verification of its consistency with respect the node
of the same level. For each detected consistency a new pattern is created
in the immediate following level. Actul\lizl\tion is propl\gl\ted following this
strategyo

'.

4.2 Selection phase

Select one rule from the conftict set is accomplished in rule-based systems ap-
plying concepts such as recency, refraction or specificity (see strategies LEX
and MEA from OPS51anguage [BFKM85]). However, there are other important
issues to be considered in implementing HLPN:

lo A HLPN can model concurrence. In each execution cycle, more than one
enabled transition can be flred.

2. The strategies to solve conflicts depend on the application, and the resolution
objectives can be different in each conflicto

In the KRON interpreter, trJl.nsitions are grouped by conflicts, each one hav-
ing its resolution strategy that we call control policy. During selection, all enabled
transitions in a conflict are considered together, the conftict control policy is the
responsible to provide a solution (transitions and firing modes must be chosen).
The KRON interpreter offers a control policy library but the user can design
new control policies according to the application domain.

In eacq execution cycle the set of all enabled transitions are known due to
the incremental operation of the KRON interpreter [VB90). It is an important
difference from other centralized implementations, as the ones based on repre-
senting places ICSV86!, where only a list of likely enabled transitions is known.
This list can contain transitions that are not enabled. The consideration oí these
additional transitions makes the efficiency of the interpreter to decrease.

4.3 Firing phase

A transition firing with respect to a firing mode (pattern of the n level) carries
on the following steps:

1. The calculation tree is traversed backwards from the consistent binding (fir-
lng mode) to find out whicha.rethc tokensused to generate it. Each of thcse
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tokens is then removed from the input places and a tree update is performed
in all the transitions sharing these input places.

2. The piece of code associated to the firing mode is executed.
3. The tokens specified by the output arcs of the transition are added to the

output places and a tree updates is performed in all the transitions having
these places as inputs.

5 Efficiency issues

The efficiency of a Petri net implementation can be measured by a function of
the number of operations performed by transition firing. In the proposed imple-
mentation a transition firing carries on the elimination of the tokens produced by
the firing mode and the addition of tokens in the output places. In these activi-
ties tree elemental operations are involved: creating a pattern, delete a pattern
and make new pattern matching.

In a transition firing, the number of performed operations depends on two
main factors: the number of tokens removed from the input places and the num-
ber of tokens added to the outpi.1t places. The cost of adding a token in a place
depends on the number of descending transitions, that is the number of trees
to be updated. The operations involved in adding a token are: pattern creation
and pattern matching. These operations depend on:

1. The number of input places. A large number of places means a deep join tree
with many entry nodes. The average number of pattern matching operations
grows with the deep of the join tree.

2. The patterns corresponding to entry nodes. The number of patterns in entry
nodes depends on the number of tokens in places, the expressions labeling
ares and the cardinality of token attributes. Thus, if a token's attribute
holds ml\11Yvl\lues, one tokon ml\Ygenorl\to ml\ny pl\ttems Irr an entry node.
The number of pattern matchlng operations also Increase If the number of
patterns is bigger.

3. The ares order. The interpretation mechanism evaluates 'the expressions 190-
beling the ares sequentiary, stopping when there are not consistent matches
with an initial sequ1:J1ceof arc expressions. Locating earlier the arc labeled
with the most restrictiv,e expression, or the one who has its place normally
empty reduce the number of consistent matches that are passed down in
the join tree. It makes sense to locate at the end the ares whose matches
are changed frequently (ares whose places support frequently operations of
I\{\dlng1\1\C\ (\t\\t\t.lnj{ t,okt\na).

Pattern deletion is the operation involved on removlng tokens (rom places.
Tha number of thcse operntlons depends on the former factors in a similar way.

Unfortunately, the applicatlon of thesc Ideas for Improvlng efficlency and
getting down the cost of calculate the firing modes are sometimes contradictory.
FOr exl\mplc, tho principie of puttlng frcquontly chl\nging marklng places later
ma.y be in conflict with the principie of putting ares with restrictive expressions

,
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earlier if an arc is both restrictive and matched by the tokens that are frequently
put and deleted from their place.

For centralized implementations, the main emphasis has been put on the
selective scanning of transitions. These implementations avoid the checking of
all transitions, and the idea is to make a quick selection of a subset of transitions
likely to be ftred. In non incremental implementations, the number of operations
in an execution cycle can be considered as: the number of created patterns and
pattem matching operations coming from completely recomputing the firing
modes of the ftred transition and the transitions likely to be ftred.

The adopted approach can be more efficient than non incremental implemen-
tation because avoids recalculations and considers only totally enabled transi-
tions. However, there are situations where a non incremental technique may be
more efficient as in the HLPN of figure 7. Let us show the number of operations
by the ftring of transition Tl using both, the KRON interpreter approach and
another non incremental technique. When transition Tl is fired, token Al mus\,
be deleted from place Pl and the same token must be added to place Pl again.

Using the KRON interpreter approach, on the one hand deleting Al from
Pl implies that 7 patterns must be removed from the tree attached to T2, and
another one from tree attached to Tl' On the other hand, adding Al in P1
implies that 7 patterns must be created and 6 pattern matching operations
must be performed in the tree attached to T2 and 1 pattern is created in the
tree attached to T2.

Nevertheless, using a non incremental implementation such as representing
places the number of operations is reduced. Let us take Pl as representing place
of Tl and P4 as representing place of T2. In the place P4 there are no tokens,
therefore only the transition Tl is in the list of likely enabled transitions. The
completely recompute of ftring modes of transition Tl generates 2 patterns. The
dift'erence from KRON approach is obvious.

Since the RETE algorithm maintains state between cycles, KRON interpreter
Is efficlent In sltuatlons where there are many tokens and most of them do not
change on a cycle. On the other hand, the number of operations in a transition
ftring depends ón the output transitions of the input and output places. That
is, the average number of operations by transition ftring depends on the aver-
age number of output transitions. There are two situations where the KRON
interpreter does not take advantage of temporal redundancy: when the number
of tokens that a,re involved in a transition firing is large with respect the total
number of tokens; and when the average number of descending transitions from
places is high. In both cases the number of operations required to update the
stored information can be greater than the number required for a recalculation.

6 Conclusion.

Thls paper provides inside knowledge of a software Implementation for HLPN.
To be more specific we use a speciallzed verslon of HLPN called KRON. KRON
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Flg. 7. A sample where the KRON Interpreter shows lowerefficlency.

(Knowledge Representation Oriented Nets) is a frame based knowledge repre-
sentation language for discrete event systems. In this representation schema, the
system dynamic behavior is represented by a HLPN that we call KRON neto

We follow an interpreted and centralized approach. This interpreter makes
use of the similarities between the inference engine of a rule based system and
the Interpretatlon mechanlsm of a HLPN, speclftcally It uses an adaptatlon of
the RETE matchlng algorlthm used in the OPS5 rule based language. As In
RETE, the main idea. is to exploit temporal data redundancies.

A strategy to speclalize the RETE match algorithm to be more suitable ror
HLPN software implementations has been proposed. Our approach for the in-
terpretation m~hanism makes use of a similar data structure to the RETE net-
work. Additionally, our approach benefits from the partition of working memory
in places provided by the HLPN that implies the generation of simpler networks
than the ones in more general production systems such as OPS5

,,/

From the data structure point of view, there are two aspects that make
differences between the RETE algorithm and the KRON interpreter. The ftrst
one is that partially specified patterns are stored instead of tuples of pointers
as hl\ppens in the RETE I\lgorithm. Another differencei5 related with the link
structure between patterns that avoidssearchesin a node pa:ttern'Ustwhen an
element must be eliminated.

An important difference from other centralized implementations is that the
operation of the KRON interpreter is incremental. On each execution cycle, the
set of al1enabled transitions are known instead of a list oí likely enabled transi-
tions. The consideration of these not enabled transitions makes the efficiency of
the interpretcr to decreasc.

.*:
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The KRON interpreter has been designed to take advantage of temporal
redundancy. However, there are two situations where the KRON interpreter fails
in this objective: when the number of tokens that are involved in a transition
firing 'is larga- with respect the total number of tokens; and when the average
number of descending transitions from places is high. In both cases the number
of operations required for update the stored information' can be greater than the
number required for a recalculation.

We can conclude that the implementation technique proposed is efficient in
situations where there is a large marking and it is relatively stable. KRON has
been implemented in a SUN workstation running KEE. The interpreter has been
written using Cornmon Lisp primitives, whereas KEE primitives have been use
to access to the objects' information.
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A Subset of Lotosrith the Comp
of Plac/Transition-NE

Michel B>eau,Gregor v. Bochm'

Abstract

In this paper, we define a sret of Lotos that can be
Ttansition-nets (P jT-nets). lat means that specifica
can be translated into finitelT-nets and validated 1
techniqu~s. An important lect of our work is that
P jT-nets can be simulated our Lotos subset. It IJ
we put on Lotos in order totain finite nets are mini
also conclude that our Lotosbset and PfT-nets have
power. To the best of our }wledge, no such bidirec
has been published before.

\

Topics:

Relationships between net IQryand other approacl

1. Introduction

In this pap.er, we define a >set of Basic Lotos [Bo
modelled by finite Placef'nsition-nets (P fT-nets).
tions in that Lotos subset cbe represented and traJ
and validated using PjT-n(erification techniques.
work is that we show thabnversely P jT-nets can
subs.et. It means that the lstraints we put on Lot
nets ar.eminimally restrict We may also concludE
PjT-nets have equivalent nputational power. To
no such bidirecti9nal transion scheme has been p\

The problem of modelt process-oriented langt:
CCS and CSP like langua@by Petri nets has been
Cindio et al. [Cind 83], ~ano et al. [Dega 88],
[Golt 84a, 84b, 88], NielseNiel 86], Olderog [Olde
considered CCS or CSP, both. Lotos has been
Lean [Marc 89], and Gar:l and Sifakis [Gara 90
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