Taking Advantages of Temporal Redundancy in
High Level Petri Nets Implementations

J. A. Bafiares, P. R. Muro-Medrano and J. L. Villarroel

Departamento de Ingenierfa Eléctrica e Informética
UNIVERSIDAD DE ZARAGOZA
Maria de Luna 3, Zaragoza 50015, Spain™*

Abstract. The aim of this paper is to present a software implementa-
tion technique for High Level Petri Nets. The proposed technique, imple-
mented for a specialized version of HLPN called KRON, is interpreted
and centralized. The approach makes use of the similarities between the
inference engine of a rule based system and the interpretation mechanism
of a HLPN. It performs an adaptation of the RETE matching algorithm
to deal with HLPN implementations. As in RETE, the main objective is
to exploit the data temporal redundancy, with this purpose, a RETE-like
data structure is implemented. Additionally, our approach benefits from
the partition of working memory facilitated by the HLPN. These pecu-
liarities allow the generation of simpler data structures than the ones in
more general production systems such as OPS5.

Keywords: Higher-level net models, Rule based systems, Petri net im-
plementation, Matching algorithms.

1 Introduction

A Petri Net software implementation is a computer program created to simulate
the firing of transitions following the theoretical behavioral rules imposed by the
Petri net semantics. Petri nets implementation techniques can be classified in
[CSV86): centralized and decentralized implementations. In a centralized imple-
mentation, the full net is executed by just one sequential task, commonly called
token player. Pieces of code associated to transitions (code can be associated to
transitions to provide operational capabilities) can be executed as parallel tasks
to guarantee the concurrence expressed by the net. In a decentralized implemen-
tation, the overall net is decomposed into subnets (normally, sequential subnets)
and a task is created to execute each subnet. The other main classification for
software implementations of Petri nets distinguishes interpreted and compiled
implementations. An implementation is interpreted if the net structure and the
marking are codified as data structures. These data structures are used by one
or more tasks called interpreters to make the net evolve. The interpreters do

** This work has been supported in part by project ROB91-0949 from the Comisién
Interministerial de Ciencia y Tecnologfa of Spain and project IT-10/91 from the
Diputacién General de Aragén. J. A. Bafiares is FPU fellow from the Ministerio de
Edueacién v Ciencia of Spain,

33

not depend on the implemented net. A compiled implementation is based on the
generation of one or more tasks whose control flows reproduce the net structure.
No data structures are needed in compiled implementations.

The software implementation of High Level Petri Nets (HLPN) has not re-
ceived much attention so far. Its most representative approaches are briefly
stated in the following. [BM86] presents a decentralized and compiled implemen-
tation of a subclass of HLPN (PROT nets). A PROT net is partially unfolded and
decomposed into sequential processes that are implemented as a set of communi-
cating Ada tasks. Other representative approach has been stablished in [CSV86],
where a centralized and interpreted implementation of Colored Petri Nets is pro-
posed. One of the main ideas of this work is the extension of representing place
concept to HLPN. Another centralized and interpreted implementation of HLPN
is proposed in [Har87], in this case, several interpreters compete to make the net
evolve. The net is codified in just one data structure. A highly decentralized
implementation is proposed in [BBM89], each place and transition are imple-
mented as an OCCAM process and the implementation runs on a transputer
based architecture. [VB90], the closest related work, will be explained later.

The aim of this paper is to present a software implementation approach for
HLPN developed for the KRON knowledge representation language ([MM90]
and [Vil90]). The proposed technique is interpreted and, in principle, centralized.
However, the basis of this technique can also be used in decentralized implemen-
tations. This technique is based on the similarities between the inference engine
of a rule based system and the interpretation mechanism of a HLPN. In both,
efficiency is an important consideration since rule based systems and HLPN
based systems, may be expected to exhibit high performance in interactive or
real-time domains. The proposed HLPN implementation technique makes use
of an adaptation of the RETE matching algorithm [For82] which is used in the
OPS5 [BFKMB85] rule based language. As in RETE, the main idea is to exploit
temporal data redundancies (comming from the marking that is not changed
during transition firing).

The adequacy of the RETE match algorithm for software implementations of
HLPN is getting greater interest within the research groups working on PN/AIL
Thus, [BE86] and [DB88] adopt OPS5 as the implementation language whereas
[Vil90] and [VB90] provide a more in-depth knowledge about the use of the OPS5
matching strategy (RETE) to deal with HLPN software implementations. The
paper of Valette and col. provides a pretty nice conceptual and pedagogical view
for the specific use of RETE for the matching process. The approach presented
here goes further in these ideas, which have been refined with the feedback of
our implementation experience. We propose a strategy to specialize the RETE
match algorithm to be more suitable for HLPN software implementations. A
specific implementation is proposed and some aspects, as the reduction of test
tree, are treated with more deep. Some details, which are interesting from the
software point of view (mainly related with data structures), are also considered.

The rest of the paper is structured as follows. In section 2 rule based systems
and its interpretation mechanism are explained. Additionally, the matching pro-

34

cess and the RETE match algorithm are illustrated in more detail. In section 3a

special class of high level Petri nets (KRON nets) and its relationship with rule
based systems are briefly presented. Software issues involved in the KRON inter-
preter and the RETE influences are considered in section 4. The advantages and
limitations of the proposed approach are analyzed in section 5. Finally, section
6 collects some conclusions of the work.

2 Rule based systems components and rule interpreter
mechanism '

Rule based systems can be decomposed into three parts: rule memory, working
memory and inference engine. The rule memory contains declarative informa-
tion based in precondition/consequence sentences. The working memory (data
memory) contains dynamic data that is compared with the precondition part of
the rules. The individual elements of the working memory are referred to as the
working memory elements. The rule interpretation mechanism is materialized by
the inference engine. The inference engine executes what is called a recognize-act
cycle [BFKM85] which is itself composed by three main activities:

1. Match: Performs the comparison of the dynamically changing working mem-
ory elements to the precondition part of the rules. If a precondition is sat-
isfied, the rule is included in the conflict set (the set of executable rules for
the present working memory state). Currently, the match phase problem is
often solved by the RETE match algorithm [For82].

2. Select: Selects one rule from the conflict set. Two main strategies are usually
used depending on the recency of individual condition elements and the
specificity of the precondition (LEX and MEA strategies).

3. Act: Executes the selected rule according to its consequence part.

The inference engine cycles until no rules are satisfied or the system is explicitly
halted. :

2.1 Matching process
w

The match phase of recognize-act cycle consumes the most time of the rule in-
terpreter mechanism (using conventional approaches the interpreter can spend
more than 90% of this time). To have a better understanding of the computa-
tional complexity involved in this phase we will have a look at the different steps
of the matching process in rule based systems.

Rule preconditions are composed by condition elements. In a condition el-
ement, an attribute name is followed by an expression specifying restrictions
on its value. If the expression specifies a constant value, the condition element
will match only the working memory elements with that value. The expression
can also be a variable, in this case it will match every working memory element
having that attribute, For every match, a binding between the variable and the

35

attribute value of the matched element is created (the variable is bound to the
value it matches). When a specific variable can be bound to the same value for
each occurrence in the precondition part of the rule, we say that a consistent
binding has been found [BFKM85).

From the computational point of view, the set of variables of the rule can
be seen as a pattern that must be specified in a consistent way according with
the restrictions imposed by the preconditions. The calculation of these patterns
can be made in a step by step manner. At the first level, the possible bindings
related to the first and second preconditions, are establishing resulting in two sets
of patterns partially specified. Next, the consistency of each of the patterns of the
first set must be contrasted for consistency against each one of the second set.
When two patterns are consistent, a new pattern is generated that will hold the
bindings or specifications of both (in general, more specific than its predecessors).
Next, the possible bindings with respect the third condition element must be
computed and its consistency must be contrasted against the set of patterns
computed in the previous level. The result will be again another set of patterns
still more specifics. This process goes on until restrictions of the last precondition
are integrated and the set of consistent bindings represented by completely filled
patterns are obtained. The calculation strategy is graphically illustrated by the
binary tree shown in figure 1.

This general framework is instanciated for different match algorithms. Their
main differences are the calculations they make each cycle and the information
stored to remember previous calculations. In straightforward implementations
there are many redundancies in the matching process which decrease efficiency.
This execution efficiency problem led to the development of the RETE algorithm
[For82], the TREAT algorithm [Mir86] and other related algorithms (see [Pas92]
or [SPA92] for review). In the following paragraphs we explain RETE, a well-
recognized algorithm which exploits these redundancies, and then we will see
how these ideas can be used to improve the efficiency in high level Petri nets
software implementations.

2.2 The RETE algoritm

The RETE match algorithm [For82], originally implemented in the OPS5 rule-
based programming tool [BFKMS85] avoids the brute force approach taking ad-
vantage of temporal redundancy (persistence of information in the working mem-
ory across the recognize-act cycle is called temporal redundancy). This is ac-
complished by matching only the changed data elements against the rules rather
than repeatedly matching the rules against all the data. With this purpose, the
information about previous matchings is recorded in a graph structure called
network.

The network is composed by a global test tree, common for all rules, and a join
tree specific for each rule. The test tree is composed by one-input nodes, each of
them representing a test over some attribute. A path between the root node and
a leaf node represents the sequence of tests required by a rule precondition. The
consistent bindings are established following the computation strategy explained

36

ueve 1 Q’:&‘::.:'::;ﬁ...) Q:m".,:":mw)
.

%

(consislenl patterns) allerns specified
Lo i 1st & 2nd arc expressions n 3rd arc expression

N z
b £
consistent patterns

1st, 2nd & 3rd arc expressions

LEVEL 3

LEVEL n-1 palierns specified in

LEVEL (conalalent pallerns respect)
. all arc expressions i

Fig. 1. Graphical view of the general computation process used, during the match
phase.

above (see figure 1). The information of this process is represented by the join
tree associated to the rule (join tree nodes are called two-input nodes).

When a working memory element is added to the working memory, a pointer
to the element is entered in the root of the test tree and propagated in case
the test is successful. The working memory element pointers coming out of the
test tree leaves are entered in the join tree. Then, the pointers are combined
in tuples and stored in each two-input node. Each tuple collects the working
memory elements allowing a consistent binding at the corresponding level. A
tuple of the root node points to the working memory elements with which the
associated rule can be applied.

On the other hand, when working memory element is removed, the corre-
sponding pointer must be removed from the test tree root. The tuples having
this pointer must be also removed from the two-input nodes. When many work-
ing memory elements match the same condition element, removing a working
memory element is expansive. It takes a linear search to find the particular
element to remove in the list of pointers for a condition.

3 High level Petri net/rule based model equivalence

Different versions of high level Petri nets have been proposed in the scientific lit-
erature (see the book of Jensen and Rozenberg [JRO1]), we restrict ourselves here
to the approach used in our software implementation, which is called KRON,
KRON (Knowledge Representation Oriented Nets) is a frame based knowledge
representation language for discrete event systems with concurrent behavior. It

37
(P]
Instanen BART M1 Inatanear INRT
machinet M3 (P11 Instance MACHINE machinn M3 [P1L
tosh T1) Inetanen BRT PArt-n-proces ool T1) Instamen BART
machise M3 toolda-uen] iy
AfL toaks T3] M2 m 1oslt TS) (M2
::::: :1" Instance MAGHINE ' papen TOOL) Inatanees MACHINE
toali T1] Ti#
Inetanen TOOL)

Fig. 2. A simple KRON net example.

belongs to the object oriented programming paradigm and incorporates a spe-
cialization of the color Petri net formalism for the representation of the dynamic
aspects. The reader is referred to [MM90] and [Vil90] for more theoretical bases.

KRON provides a set of classes of specialized objects and primitives for the
construction of a system model where the dynamic behavior is defined by an
underlying HLPN that we will call in the sequel KRON nets. Given the scope |
of this paper, we will briefly introduce KRON through an illustrative example |
of a very simple KRON net, which is shown in figure 2. The net, composed by |
five places and one transition, is representing the load for a set of machines. The ;
arcs are labeled by expressions that are lists of attribute-variable pairs. The set
of all variables included in the arc expressions is associated to each transition.

Each pair defines possible bindings between a variable and attribute values of
tokens in the related place. For example, arc expression {name <part>; machine
<machine>; tool <tool>} in transition LOAD allows three different bindings for
variables <part>, <machine> and <tool> regarding to the actual marking:
(<part> = P1; <machine> = Mi; <tool> = T1)

(<part> = P3; <machine> = M3; <tool> = T1) and

(<part> = P11; <machine> = M2; <tool> = T5).

A transition is enabled if there exists a consistent binding for its associated |
variables. This means that all transition variables are bound, the bindings from ,
all arc expressions are the same and the variable values verify the restrictions |
imposed by the predicate associate to the transition. Each of these consistent i
bindings defines a different firing mode. In the example shown in figure 2, there
exists only one firing mode that is defined by the following consistent binding:
(<part> = P1; <machine> = M1; <tool> = T1).

The similarities between Petri nets and rule based systems have been pointed
out in several papers [BE86], [DB88], [VB90], [HLMMM91], [MMEV92]. A HLPN
can be interpreted as a rule based system in which transitions have the role of

38

rules and tokens are the working memory elements. We are interested here in the
aspects of this equivalence that are important for the interpretation mechanism.

Given the approach adopted in KRON, the relation between a KRON tran-
sition and a OPS5 rule follows in a very intuitive way. A transition of a KRON
net can be easily interpreted as a rule with variables:

1. The precondition part of a rule-transition is composed by the conditions de-
fined by the input labeled arcs. Each input arc expression can be assimilated
to a condition element of a rule.

2. The consequence part collects the marking updates defined by both the input
and the output labeled arcs.

To illustrate this equivalence, let us consider again transition LOAD from fig-
ure 2. This transition can be expressed as a OPS5 rule following the approach
adopted in [BE86):

(p LOAD
(PART Tname <name> fmachine <machine> ftool <tool> fplace PARTS)
(MACHINE Tname <machine> Tplace MACHINES)
(TOOL tname <tool> fplace TOOLS)

(modify <part> Tplace PARTS-IN-PROCESS)

(modify <machine> Tpart-in-process <part> [tool-in-use <tool>
Tplace BUSY-MACHINES)

(modify <tool> fplace NIL))

In this approach, tokens (data elements) have a special attribute called
(Tplace) used to specify the place where the tokens are. The RETE test tree
and join tree associated to the rule LOAD is shown in figure 3.

On the other hand, HLPN provide some features that make jts implementa-
tion more specific than the one in general rule-based systems. The main differ-
ences are related with the working memory. A rule based system has just one
global working memory for all rules, whereas a HLPN has its working memory
splited in places. The preconditions of a transition only must match against the
tokens (data elements) of its input places. This fact allows a place to be seen as
a working memory partition. The main effects on a RETE network produced by
this partition can be established as follows:

— The root node is splited into several nodes, one for each input place, each
one defining itself a local working memory.

— The test tree of the network is reduced because no class or place tests are
needed. Consider the OPS5 rule of transition LOAD. Each precondition ele-
ment of this rule has an implicit test over the token class and an explicit test
over the place where the token is located. Place tests can be avoided making
use of the HLPN structure because each condition element has implicitly
associated an input arc. The class test (PART, MACHINE or TOOL) can also be
avoided because each place has associated a set/class of possible tokens. All
tokens in a place belong to the same class.

Join elernents in wich
tool attribute from left
equals tool atributte from
right.

Fig. 3. RETE network generated from transition LOAD.

— It can not make use of the structural similarity [BFKM85]. The structural
similarity allows the sharing of partial branches of the test tree by different,
but similar, condition elements. Except in places that are shared by several
transitions, the branches of the test tree come out from separate root nodes.
This fact makes impossible for nodes to be shared.

If the structural similarity reminded are not used, the test tree obtained is
a set of separated chains coming out from root nodes. Thus, each chain can be
reduced to only one node representing all test and bindings of the corresponding
condition element. It is graphically illustrated by the network shown in figure 4.
It can also be compared with the RETE network in figure 3.

4 Interpretation mechanism in KRON

4.1 Matching phase

Our approach for the interpretation mechanism makes use of the temporal redun-
dancy features pointed out in the RETE matching algorithm. With this purpose,
a similar data structure to the RETE network is implemented. Additionally, our
approach benefits from the partition of working memory provided by the HLPN
that implies the generation of simpler networks than the ones in more general
production systems such as OPS5.

40

. MACHINES

(bind <machine> to
value of machine)

Join elemnents in wich
rachine attribute from
lefl equals machine atributie
from dght.

Jain elements in wich
\ tool attsibute from left
equals tool atrbutte from
tight.

Fig. 4. Network generated from LOAD transition profiting by the HLPN structure.

In the KRON interpreter the tuple of variables associated to a transition is
considered a pattern. Similarly to RETE, a tree is generated for each KRON
transition. These trees are composed by two node classes:

1. Entry Nodes. Do not have predecessors and correspond to patterns with
bindings generated by a single input arc. Each entry node has a link to the
corresponding input place which is, in fact, a pointer to its local working
memory. These nodes correspond to folded branches of the test tree in a
RETE network.

2. Join Nodes. Correspond to consistent patterns with respect to several input
arcs. These nodes are equivalent to the join nodes in a RETE network.

The tree is organized into levels:

— LEVEL 1: Two entry nodes corresponding to the patterns of the first and
second input arcs (any order is accepted). _
— LEVELi (1< i < n): An entry node corresponding to the i+1 input arc and

a join node created upon the nodes of level i-1.

— LEVEL n: A join node, which represents the consistent bindings of the tran-
sition. ;

Calculation is performed in an increasing direction of levels and, inside each
level, from left to right. As in a RETE network the intermediate results of the
matching process are stored and recalculation can be avoided meanwhile no
changes in the allocation of the tokens of the places involved are made. To do
that, the information about the set of patterns partially specified is stored in
a special data structure. To provide fast accessibility each of these patterns is
linked to its predecessors and successors. The patterns corresponding to the entry
nodes do not have predecessors. In this case, a link is set between the pattern
and the token that generated it. Figure 5 shows a graphical representation of

41

(1]

it mnsces PART

machines M3 (P11l o

teal: T1) st s PART (M1 Lot sences MA CHINE
machines M2

(P tocks TS)

et e PART
machine: M1
teal: T1)

Fig. 5. Link structure for the LOAD network.

the network, this highly related data structure allows a fast tree update because
it avoids computational searches.

Figure 6 shows more details about the link structure developed in our imple-
mentation. To facilitate software development, KRON has been implemented in
KEE (Knowledge Engineering Environment from Intellicorp) which runs on top
of Common Lisp. The interpreter itself has been implemented exclusively us-
ing Common Lisp primitives (Common Lisp is specially attractive to deal with
pointers). The typical Lisp cons cells are used in the figure to describe more
graphically the link structure. A cons cell is stood for a box with two point-
ers. The cons cells are linked by arrowlike pointers emerging from their right
and left sides. Figure 6.a shows a prototypic tree node that is composed by a
list of pointers: the first one points to the list of patterns, the rest are pointers
to the previous and successor nodes. Figure 6.b shows the data structure for a
pattern composed by: a list of pointers to the previous and following patterns
at the same and different levels, another pointer points to an association list of
pairs’ variable-value (the tuple of partially specified variables of the transition).
Finally, figure 6.c shows the data structure used in the place: the first element
is a list of pointers to the entry nodes that pick up the patterns with bindings,
the rest is a list with the links that are needed for each token in the place, such
as the pointers to its generated patterns.

From the data structure point of view, there are two aspects that make
differences between the RETE algorithm and the KRON interpreter. The first
one is that partially specified patterns are stored instead of tuples of pointers
as happens in the RETE algorithm. Another difference is related with the link

42
! Previous 2
N““‘ Rt
L - F sl rrrs 7
SAANTREENODEL W8 W
,S S S E 7 e F
g LS Y G
7’ AT D < AN
iy 5 B [i e S
VoA A PP A AL S A A
N N AN AN AR A
s 2 riE Fir)]
A
s < - L S
E LS AOAN AL
WA NN N A A AR AT
R S St B Rt BV b S e B N B
AN NG AN AN R N,
\5 Fnllwh__queln opart> P1
Joln node M1 M
<woob Tl ool Tl |
(a)
Faei Father | Father2 foue?
of patiern [omshine
mmb‘rl of pattern pa :

® IJ.'.'.'.'. ees)

M.

M e 3 <parc P11
M1 ine- MO
Lwnbs T1 conb T3 <ot T3
te)
Ao Mk etrniatnirn

43

structure between patterns that avoids searches in a node pattern list when an
element must be eliminated.

The data structure created during the matching process is not modified until
a change in the token distribution happens. Two cases must be distinguished:

1. Deleting a token. Carries on the elimination of the patterns specified by
this token. The calculation trees of all descending transitions of the place
containing the token are examined, and its successors’ patterns deleted.

2. Adding a token. Originates new bindings of the transition variables. If the
token has been added in the place corresponding to the i-th input arc, a
new pattern or patterns are created in the entry node of the level i-1. The
new pattern causes the verification of its consistency with respect the node
of the same level. For each detected consistency a new pattern is created
in the immediate following level. Actualization is propagated following this
strategy.

4.2 Selection phase

Select one rule from the conflict set is accomplished in rule-based systems ap-
plying concepts such as recency, refraction or specificity (see strategies LEX
and MEA from OPS5 language [BFKM85]). However, there are other important
issues to be considered in implementing HLPN:

1. A HLPN can model concurrence. In each execution cycle, more than one
enabled transition can be fired.

2. The strategies to solve conflicts depend on the application, and the resolution
objectives can be different in each conflict.

In the KRON interpreter, transitions are grouped by conflicts, each one hav-
ing its resolution strategy that we call control policy. During selection, all enabled
transitions in a conflict are considered together, the conflict control policy is the
responsible to provide a solution (transitions and firing modes must be chosen).
The KRON interpreter offers a control policy library but the user can design
new control policies according to the application domain.

In each execution cycle the set of all enabled transitions are known due to
the incremental operation of the KRON interpreter [VB90]. It is an important
difference from other centralized implementations, as the ones based on repre-
senting places [CSV86], where only a list of likely enabled transitions is known.
This list can contain transitions that are not enabled. The consideration of these
additional transitions makes the efficiency of the interpreter to decrease.

4.3 Firing phase

A transition firing with respect to a firing mode (pattern of the n level) carries
on the following steps:

1. The calculation tree is traversed backwards from the consistent binding (fir-
ing mode) to find out which are the tokens used to generate it. Each of these

44

tokens is then removed from the input places and a tree update is performed
in all the transitions sharing these input places.

2. The piece of code associated to the firing mode is executed.

3. The tokens specified by the output arcs of the transition are added to the
output places and a tree updates is performed in all the transitions having
these places as inputs.

5 Efficiency issues

The efficiency of a Petri net implementation can be measured by a function of
the number of operations performed by transition firing. In the proposed imple-
mentation a transition firing carries on the elimination of the tokens produced by
the firing mode and the addition of tokens in the output places. In these activi-
ties tree elemental operations are involved: creating a pattern, delete a pattern
and make new pattern matching.

In a transition firing, the number of performed operations depends on two
main factors: the number of tokens removed from the input places and the num-
ber of tokens added to the output places. The cost of adding a token in a place
depends on the number of descending transitions, that is the number of trees
to be updated. The operations involved in adding a token are: pattern creation
and pattern matching. These operations depend on:

1. The number of input places. A large number of places means a deep join tree
with many entry nodes. The average number of pattern matching operations
grows with the deep of the join tree.

2. The patterns corresponding to entry nodes. The number of patterns in entry
nodes depends on the number of tokens in places, the expressions labeling
arcs and the cardinality of token attributes. Thus, if a token’s attribute
holds many values, one token may generate many patterns in'an entry node.
The number of pattern matching operations also increase if the number of
patterns is bigger.

3. The arcs order. The interpretation mechanism evaluates the expressions la-
beling the arcs sequential'y, stopping when there are not consistent matches
with an initial sequence of arc expressions. Locating earlier the arc labeled
with the most restrictive expression, or the one who has its place normally
empty reduce the number of consistent matches that are passed down in
the join tree. It makes sense to locate at the end the arcs whose matches
are changed frequently (arcs whose places support frequently operations of
adding and deleting tokens),

Pattern deletion is the operation involved on removing tokens from places.
The number of these operations depends on the former factors in a similar way.
Unfortunately, the application of these ideas for improving efficiency and
getting down the cost of calculate the firing modes are sometimes contradictory.
For example, the principle of putting frequently changing marking places later
may be in conflict with the principle of putting arcs with restrictive expressions

40

earlier if an arc is both restrictive and matched by the tokens that are frequently
put and deleted from their place.

For centralized implementations, the main emphasis has been put on the
selective scanning of transitions. These implementations avoid the checking of
all transitions, and the idea is to make a quick selection of a subset of transitions
likely to be fired. In non incremental implementations, the number of operations
in an execution cycle can be considered as: the number of created patterns and
pattern matching operations coming from completely recomputing the firing
modes of the fired transition and the transitions likely to be fired.

The adopted approach can be more efficient than non incremental implemen-
tation because avoids recalculations and considers only totally enabled transi-
tions. However, there are situations where a non incremental technique may be
more efficient as in the HLPN of figure 7. Let us show the number of operations
by the firing of transition T using both, the KRON interpreter approach and
another non incremental technique. When transition T} is fired, token A; must
be deleted from place P; and the same token must be added to place P; again.

Using the KRON interpreter approach, on the one hand deleting A; from
Py implies that 7 patterns must be removed from the tree attached to T3, and
another one from tree attached to T;. On the other hand, adding A; in P,
implies that 7 patterns must be created and 6 pattern matching operations
must be performed in the tree attached to T and 1 pattern is created in the
tree attached to T5.

Nevertheless, using a non incremental implementation such as representing
places the number of operations is reduced. Let us take P, as representing place
of Ty and Py as representing place of T3. In the place Py there are no tokens,
therefore only the transition T is in the list of likely enabled transitions. The
completely recompute of firing modes of transition T; generates 2 patterns. The
difference from KRON approach is obvious.

Since the RETE algorithm maintains state between cycles, KRON interpreter
is efficient in situations where there are many tokens and most of them do not
change on a cycle. On the other hand, the number of operations in a transition
firing depends on the output transitions of the input and output places. That
is, the average number of operations by transition firing depends on the aver-
age number of output transitions. There are two situations where the KRON
interpreter does not take advantage of temporal redundancy: when the number
of tokens that are involved in a transition firing is large with respect the total
number of tokens; and when the average number of descending transitions from
places is high. In both cases the number of operations required to update the
stored information can be greater than the number required for a recalculation.

6 Conclusion.

This paper provides inside knowledge of a software implementation for HLPN.
To be more specific we use a specialized version of HLPN called KRON. KRON

46
{Al {A2
instance: A} instance:A}
(X2 (Y1
(X1 instance: X} instance: Y)

instance: X {Yi
P1 s instance: Y)

P2 P3

(name <V1>) P4
{name <V2>)

(name <V>)

{name <V3>)

<V> T1 72 | <V> <VI> <V2> <V3>

{name <V>)

Fig. 7. A sample where the KRON interpreter shows lower efficiency.

(Knowledge Representation Oriented Nets) is a frame based knowledge repre-
sentation language for discrete event systems. In this representation schema, the
system dynamic behavior is represented by a HLPN that we call KRON net.

We follow an interpreted and centralized approach. This interpreter makes
use of the similarities between the inference engine of a rule based system and
the interpretation mechanism of a HLPN, specifically it uses an adaptation of
the RETE matching algorithm used in the OPS6 rule based language. As in
RETE, the main idea is to exploit temporal data redundancies.

A strategy to specialize the RETE match algorithm to be more suitable for
HLPN software implementations has been proposed. Our approach for the in-
terpretation mechanism makes use of a similar data structure to the RETE net-
work. Additionally, our approach benefits from the partition of working memory
in places provided by the HLPN that implies the generation of simpler networks
than the ones in more general production systems such as OPS5

From the data strucfure point of view, there are two aspects that make
differences between the RETE algorithm and the KRON interpreter. The first
one is that partially specified patterns are stored instead of tuples of pointers
as happens in the RETE algorithm. Another difference is related with the link
structure between patterns that avoids searches in a node pattern list when an
element must be eliminated. ;

An important difference from other centralized implementations is that the
operation of the KRON interpreter is incremental. On each execution cycle, the
set of all enabled transitions are known instead of a list of likely enabled transi-
tions. The consideration of these not enabled transitions makes the efficiency of
the interpreter to decrease.

47

The KRON interpreter has been designed to take advantage of temporal
redundancy. However, there are two situations where the KRON interpreter fails
in this objective: when the number of tokens that are involved in a transition
firing is large with respect the total number of tokens; and when the average
number of descending transitions from places is high. In both cases the number
of operations required for update the stored information can be greater than the
number required for a recalculation.

We can conclude that the implementation technique proposed is efficient in
situations where there is a large marking and it is relatively stable. KRON has
been implemented in a SUN workstation running KEE. The interpreter has been
written using Common Lisp primitives, whereas KEE primitives have been use
to access to the objects’ information.

References

A\

[(BBM89] R. Esser B. Butler and R. Mattmann. A distributed simulator for high
order petri nets. In Proc. of International Conference on Applications
and Theory of Petri Nets, pages 22-34, Bonn, 1989.

[BE86] G. Bruno and A. Elia. Operational specification of process control sys-
tems: Execution of prot nets using ops5. In Proc. of IFIC’'86, Dublin,
1986.

[BFKM85] L. Browston, R. Farrell, E. Kant, and N. Martin. Programming Ezpert
Systems in OPS5: An Introduction to Rule-Based Programming. Adisson-
Wesley, 1985. S

[BM86) G. Bruno and G. Marchetto. Process-translatable petri nets for the rapi
prototyping of process control systems. IEEE transactions on Software
Engineering, 12(2):346-357, February 1986, 4

[Csvses) J.M. Colom, M. Silva, and J.L. Villarroel. On software implementation
of petri nets and colored petri nets using high-level concurrent languages.
In Proc of 7th European Workshop on Application and Theory of Petri
Nets, pages 207-241, Oxford, July 1986.

[DB8s) J. Duggan and J. Browne. Espnet: expert-system-based simulator of
petri nets, IEEE Proceedings, 135(4):239-247, July 1988.

[For82] C. Forgy. A fast algorithm for many pattern / many object pattern match
problem. Artificial Intelligence, 19:17-37, 1982,

[Har87] G. Hartung. Programming a closely coupled multiprocessor system with

high level petri nets. In Proc. of 8th European Workshop on Application
and Theory of Petri Nets, pages 489-508, June 1987.

[HLMMM91] G. Harhalakis, C.P. Lin, L. Mark, and P.R. Muro-Medrano. Information
systems for integrated manufacturing (insim) - a design methodology.
International Journal of Computer Integrated Manufacturing, 4(6), 1991.

[JRI1] K. Jensen and G. Rozenberg, editors. High-level Petri Nets. Springer-
Verlag, Berlin, 1991.

[Mir86] A. Miranker. TREAT: A new and efficient match algorithm for Al pro-
duction systems. PhD thesis, Dep. Comput, Sci., Columbia University,
1986.

[MM90] P.R. Muro-Medrano. Aplicacién de Técnicas de Inteligencia Artificial al
Disefio de Sistemas Informdticos de Control de Sistemas de Produccién.

[MMEV92)

[Pas92]

[SPA92]

[VB9O]

[Vil90]

48

PhD thesis, Dpto. de Ingenierfa Eléctrica e Informdtica, University of
Zaragoza, June 1990.

P.R. Muro-Medrano, J. Ezpeleta, and J.L. Villarroel. Aceptado en
IMACS Transactions, chapter Knowledge Based Manufacturing Model-
ing and Analysis by Integrating Petri Nets, 1992.

A. Pasik. A source-to-source transformation for increasing rule-based
system paralellism. IEEE Tran. on Knowledge and Data Engineering,
4(4):336-343, August 1992.

M. Sartori, K. Passino, and P. Antsaklis. A multilayer perceptron solu-
tion to the match phase problem in rule-based artificial intelligence sys-
tems. IEEE Tran. on Knowledge and Data Engineering, 4(3):290-297,
June 1992. :
R. Valette and B.: Bako. Software implementation of petri nets and
compilation of rule-based systems. In 11th International Conference on
Application and Theory of Petri Nets, Paris, 1990. :

J.L. Villarroel. Integracién Informdtica del Control de Sistemas Flexibles
de Fabricacidn. PhD thesis, Dpto. de Ingenierfa Eléctrica e Informatica,
University of Zaragoza, September 1990.

A Subset of Lotosrith the Comp

of Pla¢ Transition-Ne
Michel Beau, Gregor v. Bochm

Abstract

In this paper, we define a siet of Lotos that can be
Transition-nets (P/T-nets). 1at means that specifica
can be translated into finite/T-nets and validated 1
techniques. An important wct of our work is that
P/T-nets can be simulated our Lotos subset. It i
we put on Lotos in order totain finite nets are mini
also conclude that our Lotosbset and P /T-nets have
power. To the best of our lwledge, no such bidire:
has been published before.

Topics:

Relationships between net ory and other approacl

1. Introduction

In this paper, we define a »set of Basic Lotos [Bo
modelled by finite Place/Tisition-nets (P/T-nets).
tions in that Lotos subset cbe represented and trai
and validated using P/T-neerification techniques.
work is that we show thatnversely P/T-nets can
subset. It means that the 1straints we put on Lot
nets are minimally restrict. We may also conclude
-P/T-nets have equivalent nputational power. To
no such bidirectional transion scheme has been p
The problem of modell process-oriented langu
CCS and CSP like languag by Petri nets has been
Cindio et al. [Cind 83], kano et al. [Dega 88],
[Golt 84a, 84b, 88], NielseNiel 86], Olderog [Olde
considered CCS or CSP, both. Lotos has been
Leon [Marc 89], and Garl and Sifakis [Gara 90

1This work was perforr within a research proj
ifications funded by Bell-Nhern Research (BNR)
Institute of Montréal (CR). Funding from the Na
lng’ Research Council of Cida is also acknowledgec

First author's address: Uersité de Sherbrooke, D¢
d'informatique, Sherbrooke (Qec), Canada, J1K 2R1. Sec
de Montréal, Département d'), C.P. 128, Suce. “A", M
3]7. ‘

