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1 Introduction

In recent years, several researches have proposed the use of Artificial Intelligence representation techniques
for the description and manipulation of manufacturing system control models [FS84, FH87, RFHM86,
ZZ89]. The most popular representation schema for declarative descriptions of domain dependent
behavioral knowledge in knowledge based systems has been patternjaction production rules (rules are
used in most expert systems). Nevertheless, production rules are inadequate for defining terms and
describing manufacturing entities and static relationships between them. The salution for this lack of
expressiveness has been accomplished in commercial Al environments (such as LOOPS or KEE) by
integrating frame and production rule languages to form hybrid representation facilities.

However, the specification and modeling of the control logic in discrete event system such as a
manufacturing system is a quite complex problem. Our conceptual approach for model construction is
based on the integration of formal techniques, such as high level Petri nets (HLPN), in a knowledge based
model. The main goal of this strategy is to take the advantages of the well known capabilities of Petri
nets to express discrete event behaviour (states, activities, pre- and post-conditions, synchronization,
concurrency) and its graphical features, and integrate them with other representation and reasoning
possibilities provided by rule and frame based systems.

In the following paragraphs we propose a design approach for FMS control models Petri nets are used
to define the behaviour of the FMS as a discrete event system and they are implemented using rules
(the KEE rulesystem is used with this purpose). Interesting aspects of this design are related with our
methodology to create dynamic entities, the inheritance mechanism used to synchronize objects and the
strategy used to find decision problems and the incremental approach which is allowed to salve them.

2 Representation of isolated entities

In generating the manufacturing system model, each individual or class ofmanufacturing entity (products,
machines, stores, transport devices, etc.) is represented by a frame, that we generically call object. An
object can contain values, relations, metaknowledge, procedures and active values (demons). In addition
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Figure 1: Part of the manufacturing resource hierarchy.

to these programming features supported by other frame and object oriented languages, our modeling
approach ineludes a set of semantic primitives implementing a high level Petri nets [T.90, Jen86, MMEV]
(HLPN) based formalismo HLPN are used as a formal mechanism to represent behavioral information of
a dynamic entity, from a discrete event system point of view. Petri net places are mapped into specialized
slots caUed state slots. Petri net transitions are mapped into roles whereas ares are represented by role
premises and conelusions. On the other hand, colors in places are determined by objects stored in state
slots. The rule system inference engine articulates the dynamic behaviour.

Following the object oriented programming methodology, the design process start by creating elass
hierarchies whose elements will be further instantiated in other to build the manufacturing system model.
Three main hierarchies are used to deal with three different aspects: resources (physical), operations
(functional) and products.

In order to understand the modeling mechanism available to create isolated entities, let us focus
on a representative object of the manufacturing resource hierarchy which is shown in figure 1 called
Transformation-Resource. This object holds the prototypical knowledge about a generic transformation
resource. It has relations locating the entity in the abstraction hierarchy within the system model
(precision-level, has-resources and resource-of). It has slots to store predicted information
(e.g. available-capacity and pending-operations for example to be used by the scheduler), for
data collection (e.g. to save information about functioning statisties), to describe physical parameters
(e.g. set up and processingtimes and procedures) oo.

On the other hand, it holds knowledge about its behaviour as a discrete event entity. Figure
2 illustrates a graphical representation of this behaviour using Petri nets graphical features. Places
loading, operate, unloading, in-process and capaci ty are represented by their correspondent state
slot in object Transformation-Resource (figure 2). Transitions begin-operation, end-operation,
start-process, and end-process are implemented by roles which are identified in the corresponding
action slots. Figure 3 shows the external representation of some of these rules which have been
implemented in KEE. As is typical in object oriented systems, part of Transformation-Resource
behaviour is inherited from its ancestors (in this case only from Sequential-Process.

Following an analogous approach, operations are defined by objects with an embedded Petri neto
The behaviour of a typical transformation operation is represented by simple sequential net with three
transitions (start-process, start-operation and end-process) and two places (going-to-resource
and in-process).
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Figure 2: Transformation-Resource prototype.

2.1 Association of decision policies in isolated entities

It has been shown so far that the dynamic behaviour of an object is specified by an underlying Petri Net.
One problem arises at this point due to non deterministic aspects of Petri nets. This non determinism
produces decision problems which must be solved. Within the manufacturing systems domain most of
these problems correspond with scheduling decision making: e.g. if a machine can store several available
parts it may be necessary to choose one to be processed next.

In our approach, decision problems are identified by what we call confUcts. Conflicts are specialized
control objects having information, about transitions with structurally related decision problems from
the net point of view, as well as about how to solve the problem (control policy associated to the conftict).
In order to make decision in an expert manner, confticts can be characterized by its scheduling problem
features, entities involved and production goals.

{START-PROCESS
(IF (1PRODUCT IS IN CLASS PRODUCTS)
(THE CAPACITY OF TRANSFORMATION-RESOURCE IS TRUE)
THEN
(CHANGE.TO (THE CAPACITY OF TRANSFORMATION-RESOURCE IS FALSE»
(THE IN-PROCESS OF TRANSFORMATION-RESOURCE IS 1PRODUCT)
(THE LOADING OF TRANSFORMATION-MACHINE IS 1PRODUCT»

}

{BEGIN-OPERATlON
(IF (THE LOADING OF TRANSFORMATION-RESOURCE IS 1PRODUCT)
THEN
(THE OPERA TE OF TRANSFORMATION-RESOURCE IS 1PRODUCT)
(DELETE (THE LOADING OF TRANSFORMATION-RESOURCE IS 1PRODUCT»)

}

Figure 3: KEE system rules representing transitions begin-operation, and start-process.
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3 Adding constraints due to entity connections

Once the object c1ass hierarchy is available, the user is able to choose and instantiate the entities which
are needed to build the system model. The next step is to establish connections between objects, between
physical resources to build the plant resource layout, between operations to build the different process
plans, and then between plant layout and process plans to get the dynamic behaviour of the whole system.

Dynamic entity connections are established by means of transition synchronization. Only two
synchronization types have been needed so far in our models, normal and bilateral. A normal
synchronization implies the substitution of the transition by other transition with the premises and
conc1usions ofthe transitions been synchronized (the original one is lost), further synchronization of the
transition are affected by this one. On the other hand, in a bilateral synchronization a new transition
is created with the premises and conc1usions of the transitions been synchronized (the original one is
preserved), further synchronization of the transition are not affected by this one.

In KEE rules can be manipulated as objects within an abstraction hierarchy. Following the object
oriented approach, both synchronization can be easily implemented using the inheritance properties of
the rules. A normal synchronization implies the substitution of the rule representing the transition by
another rule having as ancestors the ones of the synchronized transitions, all of these ancestors will be
considered for further synchronization. In a bilateral synchronization a new rule is created with all the
involved ancestors and only the ancestors belonging to the initial rule will be considered later on.

4 Decision making issues

The incremental approach shown to build the dynamic definition of the model allows an incremental
approach for the design of decision making policies. Although this incremental strategy does not guarantee
the best decisions, it is good enough to automaticalIy find a default policy at early development steps
(during prototyping), leaving the optimization of that policy for more advanced design decisions.

New decision points appear with the connections between dynamic objects. Each synchronization,
normal and bilateral, produces a new conflicto Normal synchronization produces a more constrained
conflict whereas bilateral produces two interrelated conflicts, one more constrained and another new one
due to the creation of a new path in the net (of course coupled conflicts may appear applying the transitive
c1osures).

Control policies from old conflicts are maintained and related with new conflicts. In this way, control
policy of a new conflict can be as simple as the election between old control policies. An interesting
example appears when synchronizing plant layout and process plans, the new control policy can choose
between resource and operation strategies allowing in this way opportunistic reasoning.
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