
KRON� Knowledge engineering approach based
on the integration of CPNs with objects�

J� A� Ba�nares� P� R� Muro�Medrano and J� L� Villarroel

Departamento de Inform�atica e Ingenier��a de Sistemas
Universidad de Zaragoza

Maria de Luna �� Zaragoza ������ Spain

Abstract� This paper presents KRON 	Knowledge Representation Ori

ented Nets�� a knowledge representation schema for discrete event sys

tems 	DESs�� KRON enables the representation and use of a variety of
knowledge about a DES static structure� and its dynamic states and be

havior� It is based on the integration of Colored Petri nets with frame
based representation techniques and follows the object oriented paradigm�
The main objective considered in its de
nition is to obtain a compre

hensive and powerful representation model for data and control� and
to incorporate a powerful modeling methodology� The communication
model used in KRON is close to the generative communication model�
which supposes an alternative to message passing� The inferences de

livered from the DES behavioral knowledge are governed by a control
mechanism based on a rule inference engine�

keywords� Colored Petri nets� frames� knowledge engineering� DES�

� Introduction

This paper is devoted to illustrate the main features involved in KRON �Knowl�
edge Representation Oriented Nets�� We starting creating KRON while we were
working in the development of knowledge based models for DESs� It became
clear in working with DESs the need to expand the power of our knowledge en�
gineering representation schema with the integration of an adequate formalism
to deal with discrete event system features�

A lot of integrations of Petri nets with di�erent paradigms can be found in
technical literature� These may be split into three main groups	
� Extension
of Petri nets with primitives to support methodological aspects �modularity�
top�down and bottom�up design� ����� �� Integration of Petri nets with algebraic
speci
cations and �� Integration of Petri nets with the frame�object paradigm�
Several workshops about the integration of Petri Nets and objects are held reg�
ularly as part of prestigious conferences �Int� Conf� of Application and Theory
of Petri Nets� IEEE Int� Conf� on Systems Man and Cybernetics� ����� this is a
proof of the growing interest in this topic�

� This work was supported by the Spanish Interministerial Comission of Science and
Technology 	CICYT� under project TAP��
�����

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

A HLPN extension belonging to the
rst group is HCPN �Hierarchical Col�
ored Petri Net�� HCPNs �HJS��� provide a set of constructs to support modu�
larity aspects� The idea behind HCPNs is to allow the construction of a large
model by combining a number of small HLPNs into a larger net� and di�erent
structuring tools are proposed with this purpose� Posterior proposals extending
HLPNs with structuring constructs can be found in �Feh�
� and �CH���� Other
works that propose di�erent object oriented interpretations of HCPN constructs
can also be found in �Lak��� and �Eng����

The presentation of the most representative works on the PN integration
with algebraic speci
cations �second group� can be brie�y summarized as fol�
lows	 Algebraic Nets �Vau���� Many�sorted High�level Nets �Bil��� and Petri Nets
with structured tokens �Rei�
� are a result of the integration of HLPNs �used to
describe the control structure of the system� and algebraic speci
cations �used
to describe the data structure�� These previous works have been the basis of
many others� most of them also considering some object oriented focus� OBJSA
Nets �BdCM��� and CO�OPN �Concurrent Object�Oriented Petri Nets� �BG�
�
are good examples� Its goal is to allow data abstraction and introduce net mod�
ularity�

Finally� the third group are the approaches based on a frame�object ap�
proach� From an engineering point of view� we consider them closer to human
conceptual thinking than the ones based on algebraic speci
cations� What is
required here� is a conceptual model which will enable engineers and computer
scientists to describe domain concepts in a more intuitive way� Examples of this
group are	

� In �DG��� high level Petri nets are integrated with the Entity�Relationship
model to obtain the EER formalism� This model is revised in �DGV�
� incor�
porating object oriented concepts to increase expressiveness in data model�
ing� However� this approach is not extended to the process structure in order
to provide an overall modeling framework� Finally� a second revision is done
in �BDLGV���� In this last piece of work the internal behavior of each object
is described by means of a Petri net �O�net�� To obtain the global process
structure partial nets are synchronized by another Petri net� the P�net� This
P�net is not included in the object structure�

� Object Petri nets �PNO�� which have been widely referred to in technical
literature� were de
ned in �SB��� as High Level Petri Nets with Data Struc�
tures� Their objective is to incorporate the data modeling and updating into
the net model by means of frame�like data structures� Starting from this
seminal work� in �PR��� HOOD�PNO is proposed as a software engineer�
ing methodology that integrates PNO with the HOOD� In �SB��� two more
extensions to PNO were introduced	 Communicative and Cooperative nets�
They enable the modeling of a system as a collection of nets that encapsu�
late their behavior while interacting by means of message sending and the
client�server protocol�

� �BB�
� presents PROTOB� an object oriented language and methodology
based on PROT nets �BM���� In this object oriented approach� objects com�

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

municate by message passing and a hierarchical object decomposition like
HOOD is allowed� However neither inheritance nor data representation as�
pects are considered�

� LOOPN�� �LK��� has mainly been used to describe network protocols�
LOOPN is a textual language that supports object oriented structuring into
HLPNs� The language has a formal semantics which makes it possible to
transform OP�nets �Object Petri nets� into the simpler HLPN formalism�
However� as it has been pointed out by the author� there is not a precise
relation between OP�nets and the LOOPN�� language�

As the reader can see� there are a lot of integrated models� Most of the
previous approaches concentrate on providing structuring tools in compliance
with software engineering principles� by enforcing constraints that may result
in a loss of freedom and �exibility� Most of them also extend the formalism of
HLPNs� However� there is a great scope for further work in tailoring analysis
techniques to extended HLPNs�

KRON is based on the integration of Colored Petri nets �CPNs� with the
frame�object oriented paradigm� The integration model presented in this paper
provides a close integration of HLPNs and the object model� and it does not
extend the HLPN formalism� Frames and rules have been selected as a basis to
support the representation aspects due to its power for knowledge representa�
tion� Additionally� we improved programming discipline by following an object
oriented methodology obtaining important methodological advantages such as	

� it supports conceptual models closer to human conceptualization and inde�
pendent from implementation� thus the models are easier to understand� �� it
facilitates reusability and model extensibility based on encapsulation and inher�
itance characteristics�

The rest of the paper is organized as follows� Firstly� a brief presentation of
KRON constructs that support the CPN formalism is presented� In the follow�
ing sections� the case study of hurried philosophers is used to illustrate KRON�
Section � shows the de
nition of dynamic and no dynamic entities and their
relationships� Section � presents inheritance as a mechanism to share code� The
communication model is presented in section �� The paper
nishes with a con�
clusions section�

� KRON constructs

Knowledge representation of DESs must involve the representation of informa�
tion related to its dynamic behavior as well as more static information� From a
conceptual point of view� the representation of a KRON model is based on se�
mantic networks� whereas a frame implementation perspective has been adopted
for its programming� In this programming context� the representation is struc�
tured around a set of conceptual entities with associated descriptions and in�
terconnected by various kinds of associative links� However� in frame based
representations� little attention has been paid to describing the coordination

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

between objects in order to achieve collective behavior �FK���� The application
of frame�object based languages to the modeling of complex dynamic systems�
has certain inconveniences due to the lack of a formalism to specify its dynamic
behavior �concerning both� the states of the objects and the causal relationships
between states and actions��

In addition to the programming features supported by frame�object oriented
languages� our knowledge representation schema includes a set of primitives im�
plementing the CPN formalism� CPNs provide the mechanism to describe the
internal behavior of the dynamic entities and the interaction between them� with
no necessity for a low level communication model� Figure
 illustrates the frame
hierarchy The KRON hierarchy can be decomposed into three important groups	

Fig� �� KRON hierarchy�

� Net objects� Dynamic entities in KRON are descendants of a specialized
object called dynamic object� A dynamic object centralizes all the information
related to a dynamic entity �abstract or real�� and it is the repository of in�
formation about the entity states and activities� The behavioral description
of a dynamic object class is represented by a CPN� The state will be mapped
in a combination of CPN places and structured tokens� whereas the activ�
ities that produce state changes will be mapped in CPN transitions� The
constitutive elements of the structure of a CPN are represented by individ�
ual concepts and dedicated object slots �Transitions� activity slots and state

slots�� which are aggregated or composed in dynamic objects to represent the
behavior	

� The state of a dynamic entity is represented by a set of state slots� To each
state slot corresponds a single place of the CPN� State information in a
CPN is represented by its marking� this means the places and the tokens
located in the places� Tokens� which evolve by a CPN� are not mapped

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

onto specialized objects in KRON� Any entity evolving through state

slots plays the role of a token� The state of a dynamic entity is de
ned
not only by the marking relations� but also by the token attributes �slots�
that are relevant for that state� Structured tokens allow KRON to bene
t
from some CPN advantages like the aggregation of dynamic information
to obtain more concise models�

� Activities producing state changes in a dynamic object are represented
by transitions� and they are equivalent to the transitions of a CPN� Tran�
sitions that represent activities related to the same dynamic object are
located in its activity slots� The interface of a KRON dynamic ob�
ject is a subset of activity slots that hold transitions representing activities
that must be carried out in cooperation with other dynamic objects �see
section ��� In this way� transitions also provide information about the set
of applicable services for the current state�

Finally� CPNs of dynamic objects themselves can be aggregated to create
more complex nets in a high level structure called model� which describes
the collective behavior�

�� Relations� Relations hold the information of interdependent KRON objects�
KRON allows the de
nition of relations as an important concept at the same
level as classes or objects� Generic relations are de
ned as a specialization
of relation�object� When a relation is de
ned between two classes� a slot is
created in the
rst class with the name of the relation� and another slot is
created in the second class with the name of the inverse relation� Demons
attached to these slots are responsible for making automatic updating of
direct�inverse relations� From the CPN point of view� relations make possible
the combination of objects in more complex data structures that represent
tokens�

KRON also provides speci
c relations related to the description of dynamic
behavior	

� Net relations support CPN arcs and expressions labeling them� and are
used to specify connections between state slots and transitions� The in�
formation about net relations is stored in transitions�

� Synchronization relations provide a simple way to specify interconnection
between dynamic entities� which is done by means of the synchronization
of activities in the activity slots that constitute the interfaces of dynamic

objects�

�� Control objects� These objects provide the mechanisms and policies used
to implement the evolution rules of the underlying CPN �token player in
Petri net terminology and inference engine in the knowledge representation
terminology�� The search for enabled transitions is carried out by an e�cient
matching algorithm �BMMV����

A KRON model can be not fully deterministic� that is� there exist points in
which decisions have to be taken in order to establish the model evolution�
For the selection phase� transitions are grouped into con�icts by inspecting
the net structure� and each one is provided with a particular control policy�

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

Con�icts may also be related in order to provide them with a control policy�
Con�icts enable us to establish a simple interface between the model and a
decision making system�
The interpretation of a model is carried out by the control�mechanism� which
applies the corresponding control�policy to each con�ict located in the model�

� Relations to CPNs

The Petri net underlying a KRON model can be considered as a subset of a CPN
with a special syntax� However� there still exist restrictions that are introduced
to improve the modeling and simulation capabilities of CPNs to solve practical
tasks� The formal analysis of properties was not a crucial issue in the KRON
development� Our approach is closer to the work presented by Cherkasova et col�
in �CKR���� which combines CPNs with modeling by direct programming� than
to works that extend the CPN formalism�

Following this pragmatic approach� the CPN formalism is not extended� but
really� it is constrained to use simpler expressions� A KRON net di�ers from
CPNs �as de
ned in �Jen���� in the following restriction	 An Arc expression may
only denote a unique token� but not set of tokens�

Another important di�erence with CPNs is introduced by the integration
of CPNs with the object model� KRON tokens are entities� and their attribute
values and relationships are considered in order to describe the system behavior�
The nature of these tokens introduces a property called ubiquity �SB���� Ubiquity
concerns the token ability to have several occurrences in a marking� Formally� a
KRON net with ubiquity is not a correct CPN because it produces the loss of
the transition scope� Ubiquity produces the following undesirable e�ects	
� it
violates the partition and encapsulation of the state in dynamic objects� More�
over� it hides the way transitions modify the state because they have unlimited
writing access to all token attributes� �� Ubiquity is a property irreducible to
algebraic analysis� This problem is not exclusive of the integration of the object
model and Petri Nets� The problem arises in any representation language that
allows di�erent references �object pointers� to the same object� This property�
which is known as dynamic aliasing� makes it di�cult to prove the correctness
of a system representation theoretically �Mey���� KRON allows the modeller to
decide whether to avoid ubiquity in order to prove the correctness of the system
representation� or to model in a more �exible way without to worrying about
the ubiquity problem�

� A KRON model for the hurried philosophers case study

In order to illustrate the representation schema� let us focus on �The hurried
Philosophers� case study �SB���� Since the proposal allowed free interpretation
of philosopher behaviors and it was originally though for a message passing
communication model� we state our interpretation
rst	

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

{Chair
 is-a: Phisical-Entity
 ; Relaciones
 philo:
 attributeclass: seat
 valueclass: philosopher
 left-fork:
 attributeclass: left-fork
 valueclass: fork
 right-fork:
 attributeclass: right-fork
 valueclass: fork

}
{ Seat
 is-a: attribution
 domain: Chair
 slot: philo
 cardinality: 1
 range: Philosopher
 slot: chair
 cardinality: 1

}

{Philosopher
 is-a: Phisical-Entity
 ; Relaciones
 chair:
 attributeclass: seat
 valueclass: chair
}

{Fork
 is-a: Phisical-Entity
 ; Relaciones
 left-chair:
 attributeclass: right-fork
 valueclass: chair
 right-chair:
 attributeclass: left-fork
 valueclass: chair
}

{ left-fork
 is-a: attribution
 domain: Chair
 slot: left-fork
 cardinality: 1
 range: Fork
 slot: right-chair
 cardinality: 1

}

{ right-fork
 is-a: attribution
 domain: Chair
 slot: right-fork
 cardinality: 1
 range: Fork
 slot: left-chair
 cardinality: 1

}

The case study is the very well known table of philosophers� with an ex�
tension	 a philosopher may leave the table as he likes it� and new guests may
be introduced� In the world of philosophy there are philosophers that may be
thinking and eating� Moreover� philosophers must respect some rules of polite�
ness� The philosophers interact in order to respect these rules� A philosopher who
wants to be in the world of philosophy must be introduced in a common table�
and must be sit in a chair� with a philosopher on his left side� and a philosopher
on his right side� Philosophers share a fork with his right and one with his left
neighbor� A philosopher only may start eating if he has a fork on his left and
a fork on his right� Any philosopher may decide to leave the table if he is not
eating� A philosopher leaves with the fork on his left side� which must be free�
and he leaves his chair� A philosopher may be introduced between two philoso�
phers if they are thinking �the fork between them is free�� The guest philosopher
takes a free chair and carries a fork on his left hand� Therefore� philosophers may
interact to ask and give forks� and to enter and leave the table� In the following
sections this case study will be completed�

The
rst step in the KRON modeling methodology is the identi
cation of
the dynamic and no dynamic entities which compose the system model at the
chosen abstraction level	

Fig� �� Entities and relationships�

Token objects

In the problem description it can be identi
ed the no dynamic entities Chair�
Fork and Philosopher� It can also be identi
ed the dynamic relation Seat repre�
senting the association between a chair and a philosopher� and the dynamic re�
lations left�forkand right�fork representing the associations between a chair
and his left and right forks� �In KRON dynamic relations are a specialization of
the attribution relation�� Figure � shows the frames that de
ne these entities

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

Thinking

Eating

Out

leave intro

start-eating

end-eating

philo philo

philo

philo

philo

philo

philo philo

Philosophy-world {Philosophy-world
 i s- a: dynamic -object
; act ivit ies
 acti ons : start-eating, end-eating,
 int ro, leave
 sta rt -eati ng: start -eat ing
 end- eati ng: end-eating
 i ntro : int ro
 l eave : leave
; stat es
 sta t es : Eati ng, Thinking, Out
 Eat ing:
 at t r ibut eclass: stat e
 valueclass: philosopher
 T hinki ng:
 at t r ibut eclass: stat e
 valueclass: philosopher
 Out :
 at t r ibut eclass: stat e
 valueclass: philosopher

; ot her i nformat ion
 .. .
}

{end-eating
 is-a: transition
...

{leave
 is-a: transition
...

{intro
 is-a: transition
...

{s tart-eating
 is-a: transition
 pre-net-relations:
 (Thinking
 (unit <philo>) ; philo
)
 post-net-relations:
 (Eating
 (unit <philo>) ; philo
)
 assoc-data:<philo>
 predicate: T
 action:
}

{start-eating
 is-a: transition
 pre-net-relations:
 (Thinking
 (unit <philo>) ; philo
)
 post-net-relations:
 (Eating
 (unit <philo>) ; philo
)
 assoc-data:<philo>
 predicate: T
 action:
}

and relations� These entities and relations will not be considered dynamic enti�
ties from the model point of view� That means that their internal behaviors are
not considered at this abstraction level� but they can complete the behavior of
other entities playing the role of tokens�

Fig� �� The dynamic�object Philosophy�world�

Dynamic objects

It is possible to identify the following dynamic entities from the problem descrip�
tion� The dynamic�object philosophy�world represents the activities of philoso�
phers� They may enter and leave the world of philosophy� and may be thinking
and eating� Figure � shows the dynamic�object representing the philosophy�world�
It has a state slot for each CPN place� Each place in a CPN has an associated set
of possible tokens� In the same way� each state slot has a constraint �valueclass
metaknowledge� associated to the class of objects �tokens� that it can contain�
In the philosophy�world all state slots hold philosopher instances�

We may consider the rules of politeness incrementally� Thus�
rst we de�

ne the dynamic�object Chair�Politeness� It represents that a chair may be
introduced or removed from the table considering involved forks� but it does
not consider that philosophers may be eating or thinking� Figure � shows the
Chair�Politeness dynamic object� The state slots Free�chairs and Busy�chairs
hold Chair instances� and the state slot Free�forks hold Fork instances� Transi�
tions intro�table and leave�table take into account the attributes right�fork
and left�fork of Chair instances� and modify the relations between chairs and
forks to introduce or remove a chair� The initial marking should� at least� hold

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

Free-chairs

leave-table
intro-table

pre-guest post-leave

fork

Chair-Politeness

Busy-chairs

<philo>
p

re
-r

ig
ht

-i
n

tr
o

p
re

-l
ef

t-
in

tr
o

p
os

t-
le

ft
-i

nt
ro

p
os

t-
ri

gh
t-

in
tr

o

po
st

-g
u

es
t

free-fork

p
re

-l
ea

ve

p
re

-l
ef

t

Free-forks

{Chair-politeness
 is-a: dynamic-object
 ; activities
 actions: intro-table, leave-table
 intro-table: intro-politeness
 leave-table: leave-politeness
 ; states
 states: Free-chairs, Busy-chairs,
 Free-forks
 Free-chairs:
 attributeclass: state
 valueclass: chair
 Bus y-chairs:
 attributeclass: state
 valueclass: chair
 Free-forks:
 attributeclass: state
 valueclass: fork
; other information
 ...
}

{leave-politeness
 is-a: transition
 pre-net-relations:
 (Busy-chairs ; pre-leave
 (unit <leave-chair> right-fork <fj>
 left-fork <fk> philo <philo>))
 (Busy-chairs ; pre-left
 (unit <left-chair> right-fork <fk>))
 (Free-forks ; pre-fork
 (unit <fk>))
 post-net-relations:
 (Busy-chairs ; post-left
 (unit <left-chair> right-fork (NUL L <fk>) <fj>))
 (Free-cha irs ; post-leave
 (unit <leave-chair> right-fork NULL))
}

{intro-politeness
 is-a: transition
 pre-net-relations:
 (Free-cha irs ; pre-guest
 (unit <guest> left-fork <fk>))
 (Busy-chairs ; pre-right-intro
 (unit <right-chair> left-fork <fj>))
 (Busy-chairs ; pre-left-intro
 (unit <left-chair> right-fork <fj>))
 (Free-forks ; free-fork
 (unit <fj>))
 post-net-relations:
 (Busy-chairs ; post-right-intro
 (unit <right-chair>))
 (Busy-chairs ; post-left-intro
 (unit <left-chair> right-fork NULL fk))
 (Busy-chairs ; post-guest
 (unit <guest> right-fork <fj> philo <philo>))
 (Free-forks ; fork
 (unit <fk>))
 (Free-forks ; free-fork
 (unit <fj>))
}

p
os

t-
le

ft

p
re

-f
or

k

<philo>

Fig� �� The dynamic�object Chair�Politeness�

two busy chairs and an arbitrary number of free chairs with their corresponding
left fork� Transitions are parameterized with the �philo� variable� which repre�
sents that the Chair�Politeness must be synchronized with another dynamic�

object to modify relations between chairs and philosophers�
Following� the Chair�Politenessmay be specialized to consider that philoso�

phers may be thinking or eating� Figure � shows the Chair�Eating�Politeness�
which inherits state and activity slots from Chair�Politeness� and adds two new
activities start�eating and end�eating� and a new state slot Busy�forks� It
represents that a philosopher only may start eating if he has a free fork on his
left and another one on his right side� When a philosopher is eating the corre�
sponding forks are removed from the place Free�fork� In this way� his neighbors
can not start eating� and guests may not be introduced next to him�

Transitions

Let us focus in the activity descriptions of previous dynamic�objects� From a
discrete event system perspective� transitions carry out the speci
cation and se�
mantics of CPN transitions� Petri net arc information is supported in KRON by
net�relations represented by two remarkable slots of transitions	 Relations from
state slots to transition objects working as enabling conditions are in the pre�net�

relations slot� and relations from transition objects to state slots working as causal
relations are in the post�net�relations slot�

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

Free-chairs

leave-tableintro-table

pre-guest post-leave

fork

Chair-Eating-Politeness

Busy-chairs

fo
rk

1

free-fork

fo
rk

2

Busy-forks chair

chair-philo

start-eating

end-eating

left-fork

right-fork

Free-forks

{Chair-Eating-politeness
 is-a: Chair-politennes
 ; activities
 actions: start-eating, end-eating
 start-eating : start-eating-politeness
 end-eating : end-eating-politeness
 ; states
 states: Busy-forks
 Busy-forks:
 attributeclass: state
 valueclass: chair

 ; other information
 ...
}

{start-eating-politeness
 is-a: transition
 pre-net-relations:
 (Free-forks ; fork1
 (unit <left-fork> right-chair <chair>))
 (Free-forks ; fork2
 (unit <right-fork> left-chair
 (unit <chair> philo <philo>)))
 post-net-relations:
 (Busy-forks ; chair
 (unit <chair>))
}

{end-eating-politeness
 is-a: transition
 pre-net-relations:
 (Busy-forks ; chair-philo
 (unit <chair> right-fork <right-fork>
 left-fork <left-fork> philo <philo>))
 post-net-relations:
 (Free-forks ; left-fork
 (unit <left-fork>))
 (Free-forks ; right-fork
 (unit <right-fork>))
}

<philo>

pr
e-

ri
gh

t-
in

tr
o

pr
e-

le
ft

-i
nt

ro
po

st
-l

ef
t-

in
tr

o

po
st

-r
ig

ht
-i

nt
ro

po
st

-g
ue

st

pr
e-

le
av

e

pr
e-

le
ft

po
st

-l
ef

t

pr
e-

fo
rk

<philo>

<philo>

<philo>

Fig� �� The dynamic�object Chair�Eating�Politeness�

From a knowledge representation perspective� information about activities
can be considered as declarative knowledge in the �if�then� rule style �the sim�
ilarities between CPN transitions and rules in rule based systems have been
pointed out in several works �BE���� �BMMV���� �VB����� The only di�erence is
that in rule�based languages the enabling conditions on the left hand side of the
rule �lhs�� are clearly separated from the causal conditions on the right hand side
�rhs�� Nevertheless� the execution of a transition implies removing the enabling
tokens from the input places and putting tokens in the output places according
to the post�net�relations�

Expressions labeling the arcs are represented in KRON as arc expressions

in pre and postconditions� An arc expression is a speci
cation of restrictions on
objects� These restrictions are represented� in a rule style� by a list of component
pairs	 the
rst component is the speci
cation of a slot name or the string unit

denoting an object instance� the second component� composed by one or two
elements� is a partial pattern to match the slot value� it can be a variable� a
speci
c constant value� a function or expression or another arc expression�

Following with the behavior representation of the Philosophy�world� the
activity slots leave� intro� start�eating and end�eating� point to the corre�
sponding transitions that represent activities producing state changes� To illus�
trate the internal structure of a typical transition� let us focus on a transition
prototype from the philosophy�world� which is shown in
gure � and called

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

start�eating� The value in its pre�net�relations slot is	
�Thinking �unit �philo���� The
rst element identi
es the state slot Thinking
in the dynamic object� The second one represents the arc expression �unit �philo��

which is labeling the arc�
KRON variables are identi
ed by angle brackets �e�g�� �philo��� As it is

general in rule based systems� variables play a double role	

Specify �ow conditions� Arc expressions in the preconditions are interpreted
as patterns that must be matched� They identify a token that must be in a
place slot for a transition to be enabled� For example� the expression �unit

�right�chair� left�fork �fork�� �label pre�right�intro in
gure ��
de
nes a pattern that matches all chairs in place Busy�chairs having some
value in the slot left�fork� There will be a binding between the variable
�right�chair� and the matched instance� and there will be another binding
between �fork� and the values in its slot left�fork� Additionally� these
bindings can establish equality constraints on other arc expressions of the
same transition with the same variable names�

Specify data �ow� Values bound to variables in preconditions can be trans�
ferred to postconditions� Additionally� arc expressions in postconditions can
specify modi
cations in the transferred data� Information of bound variables
is also used to update slot values of the tokens involved in a
ring�

Some particular features may be used in arc expressions to increase its ex�
pressiveness	

� An arc expression may appear as the second component of another arc ex�

pression� This is a pattern to match with the objects that are stored in the
slot� For example� �see label fork� in
gure ��	
�unit �right�fork� left�chair �unit �chair� philo �philo���

In this case �philo� is bound to the philosopher that is in the philo slot
of the chair stored in the left�chair slot of the fork instance bound to
�right�fork��

� A function call may appear as the second component of an arc expression�
A function call is represented by a list whose
rst element is the symbol ��
the second element is the function name� and the rest are the arguments�
Functions may be used in postcondition for dynamic instantiation purposes�
For example� �unit �� make�philosopher�� may down a new instance of
philosopher�

� To facilitate an incremental model design� KRON allows the use of incom�
plete transitions whose missing variables in preconditions must be provided
by transition synchronization �see section ��� These variables play the role
of parameters of the activities provided by the objects� For example� all ac�
tivities of Chair�Eating�Politeness constitute its interface� and they have
the parameter �philo��

� The keyword NULL may appear in postconditions� NULL deletes all values
from the slot� For example� �unit �left�chair� right�fork NULL �fk���

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

removes all values from slot right�fork before adding the new value bound
to �fk� �label post�left�intro in
gure ��� Additionally� a slot value can be
replaced by another value using a list with NULL and the removed values� For
example� �unit �left�chair� right�fork �NULL �fk�� �fj�� removes
the value bound to �fk� from slot right�fork of object �left�chair��
then it adds the value bound to �fj� to this slot �label post�left in
gure
���

Additionally� each transition has a predicate associated� The predicate im�
poses a logical constraint on the transition enabling� It is a Boolean function�
which can only contain those variables that are already in the expressions of
the arcs connected to the transitions� The predicate is supposed to be true by
default�

Sometimes it is useful to execute some action �execution of some particular
subprogram�� This is the purpose of a transition method called action� This
method is called each time the transition is
red� The method receives the bind�
ings of the transition variables as a parameter�

� Instances� classes and inheritance in dynamic objects

The purpose of previous sections was to explain how the dynamic behavior of
di�erent kinds of entities is described in KRON� In this section we will focus on
the use of inheritance as a mechanism to share code and representation� There�
fore� we have considered the inheritance as a subclassing relation� Subclassing
highlights redundancy within a system and the object�oriented decomposition
yields smaller models through the reuse of common mechanisms� thus providing
an important economy of expression� The subtyping relationship has not been
considered� �Di�erent approaches to formalize the behavior preservation between
parent and descendant classes can be found in �BG�
� and �BdC�����

Object oriented modeling starts by creating a hierarchy of classes� from more
generic to more specialized� whose elements will be further instantiated to build
a particular system model� Frame based languages make emphasis on inheri�
tance issues and they provide not only support for traditional slots and method
inheritance� but also allow the programmers the speci
cation of additional types
of inheritance �overriding� adding� unioning� wrappering� �����

In our working context of discrete event system domain� entities with similar
state space and behavior are grouped de
ning a hierarchy of dynamic object

classes� A dynamic object class is a template to construct a composed object�
whose instantiation implies the instantiation of the CPN structure that describes
its behavior� All instances of a dynamic object class inherit the same Petri net with
the same initial marking� Following the same process� transitions with similar
structure and behavior are classi
ed in a hierarchy tree of transition classes�
Therefore� the behavior of a child class is obtained from the inherited Petri
net by adding new transitions and state slots� or providing more speci
c details
about them� For example� inherited state slotsmay be specialized with additional
restrictions on the tokens they can hold�

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

The creation of the transition hierarchy requires more attention� Thus� a child
transition class may be specialized in the following di�erent ways	

Adding enabling conditions� The inheritance type of the pre�net�relations
and predicate slots is union� This means that their values are derived by
the and composition of the values that are in the subclass slot and the in�
herited values from its superclasses� Therefore� the net enabling conditions
of a transition class is restricted by de
ning new values in the pre�net�relation
slot of a transition subclass� Additional enabling conditions may be imposed
on a transition class by adding new values to the predicate slot�

Adding new actions� The inheritance type of the post�net�relations and
action slots is also union� When the transition is
red pre�net�relations

and post�net�relations imply the modi
cation of the respective state

slot values� Therefore� new actions may be de
ned by adding new pre and
post�net�relations values to a transition subclass� A transition
ring also
implies the execution of the action method� The action method may be spe�
cialized in a child transition class by wrapping code before� after or around
the inherited code� or overriding it� Moreover� the code of action methods im�
plies the execution of dynamic object methods� Therefore� the action method
can be indirectly specialized by the specialization of dynamic object methods�

A transition instance is never created directly� but only through the instan�
tiation of its dynamic object� Transition classes in activity slots are instantiated
and replaced by their instances� An important feature of KRON is that the
representation of an activity that is carried out in cooperation among di�erent
entities� is collected into only one transition instance� In this case� the state
slots of pre� and post�conditions may belong to di�erent dynamic objects� For
this reason a transition instance inherits all slot values from the transition class�
but pre	post�net�relations add to each inherited net relation a reference to
the dynamic object instance�

A new dynamic object class can also be created by multiple inheritance� In
this case� the subclass inherits several separated nets from their superclasses�
which can be joined to build a more complex one� The connection can be made
by adding transitions and places that model the control �ow interaction between
inherited nets� Multiple inheritance facilitates composition of incomplete repre�
sentation behavior �virtual classes� during the model development� This means
that the Petri net underlying a dynamic object class may be incomplete� and
therefore this class should be re
ned to complete the behavior representation�

Finally� it is important to note that some problems have been detected with
the integration of concurrency and inheritance� In concurrent object oriented
languages� it is called synchronization code the code that selects the set of ser�
vices that a concurrent object can execute and that depends on its state� that
is� the enabling conditions of transition objects in KRON terms� The reuse of
the synchronization code in concurrent object oriented languages has been con�
sidered di�cult due to inheritance anomaly	 synchronization code cannot be ef�
fectively inherited without non trivial class rede
nitions �MWY���� S� Matsuoka

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

and A� Yonezawa identify three kinds of inheritance anomaly	
� State partition�

ing anomaly occurs when the subclass needs to make a partition of the set of
states the superclass can have� �� History only sensitiveness of states� appears
when the methods in a parent class must be modi
ed because the application of
a method in a subclass depends on the history information� which does not man�
ifest itself in the values of the inherited instance variables� �� State modi�cation

anomaly� appears when the de
nition of a subclass requires the modi
cation of
inherited enabling conditions to account for a new action�

KRON mitigates some of the e�ects of the inheritance anomaly� A KRON
model allows the appropriate separation of the synchronization code �enabling
conditions� from the action �a piece of code� attached to transition objects� It
makes the re
nement of actions easier� allowing the inheritance mechanism to
override the two parts separately� On the other hand� Petri nets have a guard
based synchronization schema� Thus� the state partitioning anomaly pointed in
�MWY��� does not occur because the addition of new net conditions allows the
di�erentiation of substates�

Following with the case study� the
gure � shows how to specialize the
dynamic�object Chair�Politeness� To complete the model� it must be created an
instance of Philosophy�world and an instance of Chair�Eating�Politeness�
Instances of Chair� Philosopher and Fork� and the initial relations between
them� will be created by the constructors of dynamic�objects that execute its
initial�marking method�

� Dynamic entity connections

The construction of system models in KRON is done incrementally by
rst� de�
signing isolated entities and then imposing the interactions between them to
compose a bigger subpart of the system model� From a dynamic perspective�
the behavior of an entity is represented by a CPN underlying a dynamic object�
The overall dynamic model will be homogeneous if the dynamic interactions be�
tween dynamic objects are described in the same terms as the internal behavior
of objects� This means that if the interactions are described in terms of places�
transitions and arcs� the behavioral model of the system will be a CPN and the
advantages of using this formal view can be fully assumed� In KRON� the rep�
resentation of interactions between dynamic objects becomes the same problem
as the high level Petri net connections�

CPNs may be connected by merging transitions or places� and by means
of new arcs �Bau���� In KRON� transition merging has been selected as the
main mechanism to represent the interactions between dynamic objects� The
advantages of this approach will be pointed out at the end of this section� This
approach provides a synchronous communication style that has been adopted by
other works as modular�CPNs �CP���� CO�OPN �BG�
� or OBJSA �BdC���� In
this mechanism� an interaction between two or more objects can be interpreted
as the execution of a joint activity� where each object has only a partial view of

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

Free-chairs

leave-table
intro-table

pre-guest post-leave

fork

Chair-Eating-Politeness#1

Busy-chairs

pr
e-

ri
gh

t-
in

tr
o

pr
e-

le
ft

-i
nt

ro

po
st

-l
ef

t-
in

tr
o

po
st

-r
ig

ht
-i

nt
ro

po
st

-g
ue

st

pr
e-

le
av

e

pr
e-

le
ft

po
st

-l
ef

t

pr
e-

fo
rk

Free-forks

fo
rk

1

free-fork

fo
rk

2

Busy-forks chair

chair-philo

start-eating

end-eating

left-fork
right-fork

Out

leave

intro

Thinking

Eating

start-eating

end-eating

philo

philo

Philosophy-world#1

philo

philo

philo

philo
philo

philo

<philo>

<philo>

<philo>

<philo>

Fig� �� Synchronization of dynamic�object instances�

the real activity and its constraints� This interaction implies the synchronization
of the internal behavior of those objects�

To illustrate the possibilities for dynamic entity connections we will synchro�
nize the instances philosophy�world
� and Chair�Eating�Politeness
�� �See

gure ��� When a philosopher enters or leaves from the philosopher world�
new relations between chairs� forks� and philosophers are de
ned� The action
intro�table of Chair�Eating�Politeness
� implies that a philosopher must
occupy a chair� and the action intro of Philosophy�world must respect the
politeness rules� Therefore these actions must be synchronized� In fact� they
could be considered as partial views of the same activity� The result is a merging
transition that synchronizes the behavior of both dynamic entities� In the same
way� the activity leave of the Philosphy�world must be synchronized with
the activity leave�table of Chair�Eating�Politeness� On the other hand� it
is necessary to have two forks to start eating� Therefore� Philosophy�world and
Chair�Eating�Politenesmust synchronize its respective activities start�eating
and end�eating�

To support this approach� the dynamic objects interface in KRON is a set of
activity slots� Thus� the transitions of a dynamic object can be internal or inter�
face transitions� Only the interface transitions can be externally synchronized�
Connections between dynamic objects are established by naming the activity slots

that must be related in some manner� The synchronization mechanism generates

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

a new merged transition by multiple inheritance of the originals �for a complete
transition merging� additional mechanisms are supported in KRON to specify
the relations between variables from di�erent transitions whose names have local
scope�� The transition generated by the merging replaces the originals in all activ�
ity slots involved in the synchronization� It allows the di�erent dynamic objects
related by a synchronization to maintain the same view over a transition after
the merging�

Two types of synchronization �by transition merging� have been designed
for KRON� Normal synchronization substitutes synchronized transitions by a
unique transition with all pre and postconditions of the original ones� However�
a slightly di�erent case arises when a single activity may be synchronized with
several alternative activities� and these other activities can not be synchronized
with one another� This is the place for a bilateral synchronization� which supposes
a replication process�

Some characteristics of the proposed approach for dynamic entity synchro�
nization are	

� Synchronized transitions are handled as a single object that belongs to coop�
erative objects� In this way� communication between di�erent entities� from
a dynamic perspective� is supported by the same formalism that de
nes the
internal dynamic of each object�

�� Synchronized transitions provide a symmetric form of cooperation by an ar�
bitrary number of entities� and no direction of communication is intended�
Transition synchronization provides a higher level mechanism to communi�
cate objects than the classical message passing� Collective behavior of objects
can be described without an implementation model of communication� and
does not restrict the model to the client�server framework� Intuitively� tran�
sition objects are similar to the space tuples of generative communication
�CG���� Tokens may interact through transition objects by inserting tuples
with the bindings produced by arc expressions� Communication may produce
if there is pattern matching between tuples� �In the examples philosopher�
chair� and fork entities interact trough transition objects in this way�� A com�
parison of Petri nets and the generative communication can be also found
in �HV���� where Petri nets are used to specify the behavior of the hurried
philosophers based on objects and the generative communication� In this
approach the space tuple is represented by places that hold tokens� whereas
in our approach the space tuple is represented by transitions that holds the
bindings produced by tokens�

�� It may be argued that synchronized transitions violate the encapsulation�
because they have access to the local state of cooperative dynamic objects�
However� a synchronized transition denotes a relation between dynamic ob�

jects that de
nes the rules of this violation� As Rumbaugh points out in
�Rum���� a relation is not something to be hidden� but rather� to be speci�

ed abstractly� without imposing an implementation�

KRON also allows the de
nition of composite dynamic�objects� When a com�
posite is instantiated� the di�erent parts of the composite are instantiated and

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

the synchronization relations between the parts are established� In this way�
KRON may reuse through inheritance and aggregation�

� Conclusions

In this paper we have presented KRON �Knowledge Representation Oriented
Nets�� a knowledge representation schema for discrete event systems �DESs��
KRON is based on the integration of CPNs with frame based representation
techniques and follows the object oriented paradigm� In addition to the features
generally supported by object oriented languages� a set of primitives implement�
ing the CPN formalism is included� CPNs provide the mechanism to describe
the internal behavior of dynamic entities and the interactions between them�
The Hurried Philosophers example has been adapted to highlight some relevant
KRON capabilities�

Most of the approaches integrating objects and HLPNs� extend the HLPN
formalism� The approach adopted here does not extend the CPN formalism�
The frame�based representation of KRON supports the data and methodological
aspects with no need to extend the CPN formalism� So� all the advantages of
the use of this formalism can be pro
ted from working with KRON�

KRON may reuse models through inheritance and aggregation� On the one
hand� KRON uses inheritance as a mechanism to share code and representation�
On the other hand� aggregation is supported by CPN composition� CPNs may
be connected by merging transitions or places� and by new arcs� In KRON�
transition merging has been selected as the main mechanism to represent the
interactions between dynamic objects� This approach provides a synchronous
communication style with all its advantages�

The semantics of the behavioral rules is supported in KRON by a so called
control mechanism or interpreter� The control mechanism interprets the model
to make the net evolve� The implementation of an e�cient interpreter of KRON
models may be found in �BMMV���� In order to interpret the model� transitions
are grouped into con�icts� The interpretation of the model is orthogonal to the
model itself� An only interpreter may execute the model� or it may be attached
an interpreter to each dynamic entity�

A prototype of a simulation tool with graphical display and animation facili�
ties has been implemented on top of a known knowledge engineering environment
called KEE �Int��� from Intellicorp�

References

�Bau��� B� Baumgarten� Advances in Petri Nets ����� chapter On internal and
external characterization of PT
net building block behavior� Number ���
in Lecture Notes in Computer Science� Springer Verlag� �����

�BB��� M� Baldassari and G� Bruno� PROTOB� An object oriented methodol

ogy for developing discrete event dynamic systems� Computer Languages�
��	��������� �����

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

�BdC��� E� Battiston and F� de Cindio� Class orientation and inheritance in modu

lar algebraic nets� In Proc� of IEEE International Conference on Systems�

man and Cybernetics� Le Touquet�France� pages �������� �����

�BdCM��� E� Battiston� F� de Cindio� and G� Mauri� Advances in Petri Nets �����
chapter OBJSA Nets� a class of high
level Petri nets having objects as
domains� pages ������ Number ��� in Lecture Notes in Computer Science�
Springer Verlag� �����

�BDLGV��� G� Berio� A� Di Leva� P� Giolitto� and F� Vernadat� The m�
object
methodology for information system design in cim environments� IEEE

Tran� on Systems� Man� and Cybernetics� ��	��������� January �����

�BE��� G� Bruno and A� Elia� Operational speci
cation of process control sys

tems� Execution of prot nets using ops�� In Proc� of IFIC��	� Dublin�
�����

�BG��� D� Buchs and N� Guel
� CO�OPN� a concurrent object oriented petri net
approach� In Proc� of the �
th International Conference on Application

and Theory of Petri Nets� pages �������� Gjern 	Denmark�� June �����

�Bil��� J� Billington� Many
sorted high
level nets� In Proc� of Third International

Workshop on Petri Nets and Performance Models� Kyoto� pages ��������
�����

�BM��� G� Bruno and G� Marchetto� Process
translatable petri nets for the rapid
prototyping of process control systems� IEEE transaction on Sosftware

Engineering� ��	����������� �����

�BMMV��� J�A� Ba�nares� P�R� Muro
Medrano� and J�L� Villarroel� Application and

Theory of Petri Nets ����� chapter Taking Advantages of Temporal Re

dundancy in High Level Petri Nets Implementations� pages ������ Number
��� in Lecture Notes in Computer Science� Springer Verlag� �����

�CG��� N� Carriero and D� Gerlenter� Linda in context� Communications of the

ACM� ��	��� April �����

�CH��� S� Christense and N�D� Hansen� Application and Theory of Petri Nets

����� chapter Coloured Petri Nets Extended with Channels for Syn

chronous Communication� pages �������� Number ��� in Lecture Notes
in Computer Science� Springer Verlag� �����

�CKR��� L� Cherkasova� V� Kotov� and T� Rokicki� Applications and Theory of

Petri Nets ����� chapter Modeling of Industrial Size Concurrent Sys

tems� pages �������� Number ��� in Lecture Notes in Computer Science�
Springer Verlag� �����

�CP��� S� Christensen and L� Petrucci� Applications and Theory of Petri Nets

���
� chapter Towards a Modular Analysis of Coloured Petri Nets� pages
�������� Number ��� in Lecture Notes in Computer Science� Springer
Verlag� �����

�DG��� A� Dileva and P� Giolito� High
level petri nets for production system mod

elling� In Proc� of the �th European Workshop on Application and Theory

of Petri Nets� pages �������� Zaragoza 	Spain�� June �����

�DGV��� A� Dileva� P� Giolito� and F� Vernadat� Executable models for the repre

sentation of production systems� In Proc� of the IMACS�IFAC Symposium

on Modelling and Control of Technological Systems� IMACS MCTS ���
pages �������� Lille 	France�� June �����

�Eng��� S� English� Coloured Petri Nets for object�oriented modelling� PhD thesis�
University of Brighton� �����

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

�Feh��� R� Fehling� A concept for hierarchical petri nets with buiding blocks� In
Proc� of the �
th International Conference on Application and Theory of

Petri Nets� pages �������� Aarhus� �����

�FK��� R� Fikes and T� Kehler� The role of frame
based representation in reason

ing� Communications of the ACM� ��	����������� September �����

�HJS��� P� Huber� K� Jensen� and M� Shapiro� Hierarchies in coloured petri nets�
In Proc� of the �
th European Workshop on Application and Theory of

Petri Nets� pages �������� Bonn� June �����

�HV��� T� Holvoet and P� Verbaeten� Using petri nets for specifying active ob

jects and generative communication� In Object�Oriented Programming and

Models of Concurrency� A workshop within the ��th International Confer�

ence on Application and Theory of Petri Nets� �����

�Int��� Intellicorp� KEE User Guide� Intellicorp� �����

�Jen��� K� Jensen� Coloured Petri Nets� Basic Concepts� Analysis Methods and

Practical Use� EATCS Monographs on theoretical Computer Science�
Springer
Verlag� Edited by W� Brauer� G� Rozenberg and A� Salomaa�
Berlin Heidelberg� �����

�Lak��� C�A� Lakos� The role of substitution places in hierarchical coloured petri
nets� thecnical report tr��
�� Technical report� Computer Science Depart

ment� University of Tasmania� August �����

�LK��� C�A� Lakos and C�D� Keen� LOOPN��� A new language for object

oriented petri nets� thecnical report tr��
�� Technical report� Computer
Science Department� University of Tasmania� �����

�Mey��� B� Meyer� Object�Oriented Software Construction� Computer Science�
Prentice Hall� Englewood Cli�s� N�J�� �����

�MWY��� S� Matsuoka� K� Wakita� and A� Yonezawa� Research Directions in Object�

Based Concurrency� chapter Inheritance anomaly in object
oriented con

current programming languages� MIT Press� �����

�PR��� M� Paludetto and S� Raymond� A methodology based on objects and petri
nets for development of real
time software� In Proc� of IEEE International

Conference on Systems� man and Cybernetics� Le Touquet�France� pages
�������� �����

�Rei��� W� Reisig� Theoretical Computer Science �
� chapter Petri Nets and Al

gebraic Speci
cations� pages ����� Elsevier Science Publishers B�V�� �����

�Rum��� J� Rumbaugh� Relations as semantic contructs in an object
orientated
language� In Proc� of the ACM Object�Oriented Programming Systems�

Languages and Applications� OOPSLA���� pages �������� October �����

�SB��� C� Sibertin
Blanc� High
level petri nets with data structures� In Proc� of

Workshop on Applications and Theory of Petri Nets� Finland� June �����

�SB��� C� Sibertin
Blanc� Advances in Petri Nets ����� chapter Cooperative
Nets� pages �������� Number ��� in Lecture Notes in Computer Science�
Springer Verlag� �����

�Vau��� J� Vautherin� Advances in Petri Nets ����� chapter Parallel Systems Spec

i
cations with Coloured Petri Nets and Algebraic Speci
cations�� pages
�������� Number ��� in Lecture Notes in Computer Science� Springer
Verlag� �����

�VB��� R� Valette and B� Bako� Software implementation of petri nets and com

pilation of rule
based systems� In ��th International Conference on Ap�

plication and Theory of Petri Nets� Paris� �����

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

