(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

KRON: Knowledge engineering approach based
on the integration of CPNs with objects*

J. A. Banares, P. R. Muro-Medrano and J. L. Villarroel

Departamento de Informética e Ingenieria de Sistemas
UNIVERSIDAD DE ZARAGOZA
Maria de Luna 3, Zaragoza 50015, Spain

Abstract. This paper presents KRON (Knowledge Representation Ori-
ented Nets), a knowledge representation schema for discrete event sys-
tems (DESs). KRON enables the representation and use of a variety of
knowledge about a DES static structure, and its dynamic states and be-
havior. It is based on the integration of Colored Petri nets with frame
based representation techniques and follows the object oriented paradigm.
The main objective considered in its definition is to obtain a compre-
hensive and powerful representation model for data and control, and
to incorporate a powerful modeling methodology. The communication
model used in KRON is close to the generative communication model,
which supposes an alternative to message passing. The inferences de-
livered from the DES behavioral knowledge are governed by a control
mechanism based on a rule inference engine.

keywords: Colored Petri nets, frames, knowledge engineering, DES.

1 Introduction

This paper is devoted to illustrate the main features involved in KRON (Knowl-
edge Representation Oriented Nets). We starting creating KRON while we were
working in the development of knowledge based models for DESs. It became
clear in working with DESs the need to expand the power of our knowledge en-
gineering representation schema with the integration of an adequate formalism
to deal with discrete event system features.

A lot of integrations of Petri nets with different paradigms can be found in
technical literature. These may be split into three main groups: 1) Extension
of Petri nets with primitives to support methodological aspects (modularity,
top-down and bottom-up design, ...); 2) Integration of Petri nets with algebraic
specifications and 3) Integration of Petri nets with the frame/object paradigm.
Several workshops about the integration of Petri Nets and objects are held reg-
ularly as part of prestigious conferences (Int. Conf. of Application and Theory
of Petri Nets, IEEE Int. Conf. on Systems Man and Cybernetics, ...), this is a
proof of the growing interest in this topic.

* This work was supported by the Spanish Interministerial Comission of Science and

Technology (CICYT) under project TAP95-0574.

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

A HLPN extension belonging to the first group is HCPN (Hierarchical Col-
ored Petri Net). HCPNs [HJS89] provide a set of constructs to support modu-
larity aspects. The idea behind HCPNs is to allow the construction of a large
model by combining a number of small HLPNs into a larger net, and different
structuring tools are proposed with this purpose. Posterior proposals extending
HLPNs with structuring constructs can be found in [Feh91] and [CH94]. Other
works that propose different object oriented interpretations of HCPN constructs
can also be found in [Lak93] and [Eng93].

The presentation of the most representative works on the PN integration
with algebraic specifications (second group) can be briefly summarized as fol-
lows: Algebraic Nets [Vau87], Many-sorted High-level Nets [Bil89] and Petri Nets
with structured tokens [Rei91] are a result of the integration of HLPNs (used to
describe the control structure of the system) and algebraic specifications (used
to describe the data structure). These previous works have been the basis of
many others, most of them also considering some object oriented focus. OBJSA
Nets [BACM88] and CO-OPN (Concurrent Object-Oriented Petri Nets) [BG91]
are good examples. Its goal is to allow data abstraction and introduce net mod-
ularity.

Finally, the third group are the approaches based on a frame/object ap-
proach. From an engineering point of view, we consider them closer to human
conceptual thinking than the ones based on algebraic specifications. What is
required here, is a conceptual model which will enable engineers and computer
scientists to describe domain concepts in a more intuitive way. Examples of this
group are:

— In [DG8T7] high level Petri nets are integrated with the Entity-Relationship
model to obtain the EER formalism. This model is revised in [DGV91] incor-
porating object oriented concepts to increase expressiveness in data model-
ing. However, this approach is not extended to the process structure in order
to provide an overall modeling framework. Finally, a second revision is done
in [BDLGV95]. In this last piece of work the internal behavior of each object
is described by means of a Petri net (O-net). To obtain the global process
structure partial nets are synchronized by another Petri net, the P-net. This
P-net is not included in the object structure.

— Object Petri nets (PNO), which have been widely referred to in technical
literature, were defined in [SB85] as High Level Petri Nets with Data Struc-
tures. Their objective is to incorporate the data modeling and updating into
the net model by means of frame-like data structures. Starting from this
seminal work, in [PR93] HOOD/PNO is proposed as a software engineer-
ing methodology that integrates PNO with the HOOD. In [SB94] two more
extensions to PNO were introduced: Communicative and Cooperative nets.
They enable the modeling of a system as a collection of nets that encapsu-
late their behavior while interacting by means of message sending and the
client /server protocol.

— [BB91] presents PROTOB, an object oriented language and methodology
based on PROT nets [BM86]. In this object oriented approach, objects com-

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

municate by message passing and a hierarchical object decomposition like
HOOD is allowed. However neither inheritance nor data representation as-
pects are considered.

— LOOPN++ [LK94] has mainly been used to describe network protocols.
LOOPN is a textual language that supports object oriented structuring into
HLPNs. The language has a formal semantics which makes it possible to
transform OP-nets (Object Petri nets) into the simpler HLPN formalism.
However, as it has been pointed out by the author, there 1s not a precise
relation between OP-nets and the LOOPN++ language.

As the reader can see, there are a lot of integrated models. Most of the
previous approaches concentrate on providing structuring tools in compliance
with software engineering principles, by enforcing constraints that may result
in a loss of freedom and flexibility. Most of them also extend the formalism of
HLPNs. However, there is a great scope for further work in tailoring analysis
techniques to extended HLPNs.

KRON is based on the integration of Colored Petri nets (CPNs) with the
frame/object oriented paradigm. The integration model presented in this paper
provides a close integration of HLPNs and the object model, and it does not
extend the HLPN formalism. Frames and rules have been selected as a basis to
support the representation aspects due to its power for knowledge representa-
tion. Additionally, we improved programming discipline by following an object
oriented methodology obtaining important methodological advantages such as:
1) it supports conceptual models closer to human conceptualization and inde-
pendent from implementation, thus the models are easier to understand; 2) it
facilitates reusability and model extensibility based on encapsulation and inher-
itance characteristics.

The rest of the paper is organized as follows. Firstly, a brief presentation of
KRON constructs that support the CPN formalism is presented. In the follow-
ing sections, the case study of hurried philosophers is used to illustrate KRON.
Section 4 shows the definition of dynamic and no dynamic entities and their
relationships. Section 5 presents inheritance as a mechanism to share code. The
communication model is presented in section 6. The paper finishes with a con-
clusions section.

2 KRON constructs

Knowledge representation of DESs must involve the representation of informa-
tion related to its dynamic behavior as well as more static information. From a
conceptual point of view, the representation of a KRON model is based on se-
mantic networks, whereas a frame implementation perspective has been adopted
for its programming. In this programming context, the representation is struc-
tured around a set of conceptual entities with associated descriptions and in-
terconnected by various kinds of associative links. However, in frame based
representations, little attention has been paid to describing the coordination

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

between objects in order to achieve collective behavior [FK85]. The application
of frame/object based languages to the modeling of complex dynamic systems,
has certain inconveniences due to the lack of a formalism to specify its dynamic
behavior (concerning both, the states of the objects and the causal relationships
between states and actions).

In addition to the programming features supported by frame/object oriented
languages, our knowledge representation schema includes a set of primitives im-
plementing the CPN formalism. CPNs provide the mechanism to describe the
internal behavior of the dynamic entities and the interaction between them, with
no necessity for a low level communication model. Figure 1 illustrates the frame
hierarchy The KRON hierarchy can be decomposed into three important groups:

ONFLICT
ONTROL-MECHANISM
ONTROL -OBJECT
ONTROL-POLICY
ODEL
VNAMIC-OBJECT
TRANSITION ONFLICT-HAS-CP
ONFLICT -RELATION: ONFLICT -HAS-SUBCONFLICT
ONFLICT-HAS-TRANSITION
0ST-NET-RELATION
ET-RELATION
RE-NET-RELATION
ATTRIBUTION
BJECT—HELATION<§
PECIFICATION———ORDER

ILATERAL -SYNCHRO
'YNCHRONIZATION:
JORMAL -SYNCHRO

'ONCEPT-OBJECT'
HISICAL-ENTITY

ET-OBJECT:
JCONCEPT!

ELATION: ELATION-OBJECTH

Fig.1. KRON hierarchy.

1. Net objects. Dynamic entities in KRON are descendants of a specialized
object called dynamic object. A dynamic object centralizes all the information
related to a dynamic entity (abstract or real), and it is the repository of in-
formation about the entity states and activities. The behavioral description
of a dynamic object class is represented by a CPN. The state will be mapped
in a combination of CPN places and structured tokens, whereas the activ-
ities that produce state changes will be mapped in CPN transitions. The
constitutive elements of the structure of a CPN are represented by individ-
ual concepts and dedicated object slots (Transitions, activity slots and state
slots), which are aggregated or composed in dynamic objects to represent the
behavior:

— The state of a dynamic entity is represented by a set of state slots. To each
state slot corresponds a single place of the CPN. State information in a
CPN is represented by its marking, this means the places and the tokens
located in the places. Tokens, which evolve by a CPN, are not mapped

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

onto specialized objects in KRON. Any entity evolving through state
slots plays the role of a token. The state of a dynamic entity is defined
not only by the marking relations, but also by the token attributes (slots)
that are relevant for that state. Structured tokens allow KRON to benefit
from some CPN advantages like the aggregation of dynamic information
to obtain more concise models.

— Activities producing state changes in a dynamic object are represented
by transitions, and they are equivalent to the transitions of a CPN. Tran-
sitions that represent activities related to the same dynamic object are
located in its activity slots. The interface of a KRON dynamic ob-
ject is a subset of activity slots that hold transitions representing activities
that must be carried out in cooperation with other dynamic objects (see
section 6). In this way, transitions also provide information about the set
of applicable services for the current state.

Finally, CPNs of dynamic objects themselves can be aggregated to create
more complex nets in a high level structure called model, which describes
the collective behavior.

2. Relations. Relations hold the information of interdependent KRON objects.
KRON allows the definition of relations as an important concept at the same
level as classes or objects. Generic relations are defined as a specialization
of relation-object. When a relation is defined between two classes, a slot is
created in the first class with the name of the relation, and another slot is
created in the second class with the name of the inverse relation. Demons
attached to these slots are responsible for making automatic updating of
direct-inverse relations. From the CPN point of view, relations make possible
the combination of objects in more complex data structures that represent
tokens.

KRON also provides specific relations related to the description of dynamic
behavior:

— Net relations support CPN arcs and expressions labeling them, and are
used to specify connections between state slots and transitions. The 1n-
formation about net relations is stored in transitions.

— Synchronization relations provide a simple way to specify interconnection
between dynamic entities, which is done by means of the synchronization
of activities in the activity slots that constitute the interfaces of dynamic
objects.

3. Control objects. These objects provide the mechanisms and policies used
to implement the evolution rules of the underlying CPN ({oken player in
Petri net terminology and enference engine in the knowledge representation
terminology). The search for enabled transitions is carried out by an efficient
matching algorithm [BMMV93].

A KRON model can be not fully deterministic, that is, there exist points in
which decisions have to be taken in order to establish the model evolution.
For the selection phase, transitions are grouped into conflicts by inspecting
the net structure, and each one is provided with a particular control policy.

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

Conflicts may also be related in order to provide them with a control policy.
Conflicts enable us to establish a simple interface between the model and a

decision making system.

The interpretation of a model is carried out by the control-mechanism, which
applies the corresponding control-policy to each conflict located in the model.

3 Relations to CPNs

The Petri net underlying a KRON model can be considered as a subset of a CPN
with a special syntax. However, there still exist restrictions that are introduced
to improve the modeling and simulation capabilities of CPNs to solve practical
tasks. The formal analysis of properties was not a crucial issue in the KRON
development. Our approach is closer to the work presented by Cherkasova et col.
in [CKR93], which combines CPNs with modeling by direct programming, than

to works that extend the CPN formalism.

Following this pragmatic approach, the CPN formalism 1s not extended, but
really, it is constrained to use simpler expressions. A KRON net differs from
CPNs (as defined in [Jen92]) in the following restriction: An Arc expression may

only denote a unique token, but not set of tokens.

Another important difference with CPNs is introduced by the integration
of CPNs with the object model. KRON tokens are entities, and their attribute
values and relationships are considered in order to describe the system behavior.
The nature of these tokens introduces a property called ubiguity [SB85]. Ubiquity
concerns the token ability to have several occurrences in a marking. Formally, a
KRON net with ubiquity is not a correct CPN because it produces the loss of
the transition scope. Ubiquity produces the following undesirable effects: 1) it
violates the partition and encapsulation of the state in dynamic objects. More-
over, it hides the way transitions modify the state because they have unlimited
writing access to all token attributes. 2) Ubiquity is a property irreducible to
algebraic analysis. This problem is not exclusive of the integration of the object
model and Petri Nets. The problem arises in any representation language that
allows different references (object pointers) to the same object. This property,
which is known as dynamic aliasing, makes 1t difficult to prove the correctness
of a system representation theoretically [Mey88]. KRON allows the modeller to
decide whether to avoid ubiquity in order to prove the correctness of the system
representation, or to model in a more flexible way without to worrying about

the ubiquity problem.

4 A KRON model for the hurried philosophers case study

In order to illustrate the representation schema, let us focus on ”The hurried
Philosophers” case study [SB94]. Since the proposal allowed free interpretation
of philosopher behaviors and it was originally though for a message passing

communication model, we state our interpretation first:

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

The case study is the very well known table of philosophers, with an ex-
tension: a philosopher may leave the table as he likes it, and new guests may
be introduced. In the world of philosophy there are philosophers that may be
thinking and eating. Moreover, philosophers must respect some rules of polite-
ness. The philosophers interact in order to respect these rules. A philosopher who
wants to be in the world of philosophy must be introduced in a common table,
and must be sit in a chair, with a philosopher on his left side, and a philosopher
on his right side. Philosophers share a fork with his right and one with his left
neighbor. A philosopher only may start eating if he has a fork on his left and
a fork on his right. Any philosopher may decide to leave the table if he is not
eating. A philosopher leaves with the fork on his left side, which must be free,
and he leaves his chair. A philosopher may be introduced between two philoso-
phers if they are thinking (the fork between them is free). The guest philosopher
takes a free chair and carries a fork on his left hand. Therefore, philosophers may
interact to ask and give forks, and to enter and leave the table. In the following
sections this case study will be completed.

The first step in the KRON modeling methodology is the identification of
the dynamic and no dynamic entities which compose the system model at the
chosen abstraction level:

{ Chair {Fork {Philosopher
is-a: Phisical-Entity is-a: Phisical-Entity is-a: Phisica
s Relaciones s Relaciones s Relaciones

philo: left-chair: chair:
attributeclass: seat attributeclass: right-fork attributeclass: seat
valueclass: philosopher valueclass: chair valueclass: chair

left-fork: right-chair: }
attributeclass: left-fork attributeclass: left-fork
valueclass: fork valueclass: chair

right-fork: }

attributeclass: right-fork
valueclass: fork

z Seat {lefi-fork { right-fork
is-a: attribution is-a: attribution is-a: attribution
domain: Chair domain: Chair domain: Chair
slot: philo slot: left-fork slot: right-fork
cardinality: 1 cardinality: 1 cardinality: 1
range: Philosopher range: Fork range: Fork
slot: chair slot: right-chair slot: left-chair
cardinality: 1 cardinality: 1 cardinality: 1
¥ ¥ 3

Fig. 2. Entities and relationships.

Token objects

In the problem description it can be identified the no dynamic entities Chair,
Fork and Philosopher. It can also be identified the dynamic relation Seat repre-
senting the association between a chair and a philosopher, and the dynamic re-
lations left-forkand right—fork representing the associations between a chair
and his left and right forks. (In KRON dynamic relations are a specialization of
the attribution relation). Figure 2 shows the frames that define these entities

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

and relations. These entities and relations will not be considered dynamic enti-
ties from the model point of view. That means that their internal behaviors are
not considered at this abstraction level, but they can complete the behavior of
other entities playing the role of tokens.

((Philosophy-world h (Philolsoph‘y&worldb b Xmi’é-‘;?::‘:\’rii tion
. aculvsit-lgls ynamic -object pre-net-relations:
Out ' actions: start-eating, end-eating, (Thmlgmg hil : phil
intro, leave (nit <philo>) —; plilo
start -eating: start-eating poi)-net-relatiom'
end- eati ng: end-eating Q iEa(in N o
. . intro: ntro o, (un'él hilo>) ; philo
philo philo leave: leave O\ 1t<phi ipm
; states \ asoc-data<philo>
E#leave intrnb: Zlatt'”: Eating, Thinking, Out '\ predicate: T‘p
at ing: action:
. p attributeclass: state \
philo philo valueclass: philosopher \
\ T hinking: \
. attributeclass: state \\
Thinking valueclass: philosopher \ {end-eating
Out: \ is-a: tmnstion
hil attributeclass: state \\ \
phito valueclass: philosopher \ \‘
; otherinformation \\
4 A
start-eating —) \\ {intro
\ is-a: trnstion
Pphilo N
\
hilo i h
p Eating feave
is-a: transition
philo

end-eating | |

Fig. 3. The dynamic-object Philosophy-world.

Ve

Dynamic objects

It is possible to identify the following dynamic entities from the problem descrip-
tion. The dynamic-object philosophy-world represents the activities of philoso-
phers. They may enter and leave the world of philosophy, and may be thinking
and eating. Figure 3 shows the dynamic-object representing the philosophy-world.
It has a state slot for each CPN place. Each place in a CPN has an associated set
of possible tokens. In the same way, each state slot has a constraint (valueclass
metaknowledge) associated to the class of objects (tokens) that it can contain.
In the philosophy-world all state slots hold philosopher instances.

We may consider the rules of politeness incrementally. Thus, first we de-
fine the dynamic-object Chair-Politeness. It represents that a chair may be
introduced or removed from the table considering involved forks, but it does
not consider that philosophers may be eating or thinking. Figure 4 shows the
Chair-Politeness dynamic object. The state slots Free-chairs and Busy-chairs
hold Chair instances, and the state slot Free-forks hold Fork instances. Transi-
tions intro-table and leave-table take into account the attributes right-fork
and left-fork of Chair instances, and modify the relations between chairs and
forks to introduce or remove a chair. The initial marking should, at least, hold

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

(1 Chair-Politeness Free-chairs { Chair-politeness {intropoliteness
lynamic-object is-a: transition
e ~. 5 activities preset-relations:
— ~ actions: intro-table, leave-table (Free-chairs ; pre-guest
__pre-guest post-leave irfro-table: intro-politeness (unit <guest> left-fork <fk>))
) leave-table: leave-politeness o (Busy-chairs ; pre-right-intro
r intro-table j states \ (unit <ri hl-c’h air> left-fork <fj>))
leave-table states: Free-chairs, Busy-chairs, e § ’
Freedfor \ (Busy-chairs ; pre-left-intro
o Free-chairs: \ (unit <left-c h<\1r> right-fork <fj>))
BTy © attributeclass: state \ (Free-forks 5 free-fork
& g 3 valuec chair (unit <fj>))
X P : Bls\-chalrs] at pog-netiqrelations: ”
S z N ass: state \ (Busy-chairs ; post-right-intro
g8 8 < chair \ éun?lt <right-chair>))
/ - (Busy-chairs ; st-lej
anflhu;ec]ass state \\ (MI(?’I <left- chmrp;ngh{z‘mk NULL fk))
Busy-chairs . valueclass: fork \ (Busy-chairs ; post-guest
; other information \ (mnfq,ku; Ar>}1g/u ~fork <fj> philo <philo>))
(Free-forks ; fork
} \\ (unit <fk>))
\ (Free-forks ; free-fork
< (unit <fj>))
Sork ¥
{leavepolitene ss
is-a: transition
free-fork pre-net—relatlons
\ Y, (Busy-chairs ; pre-leave

(unit <leave-chair> ri ght-fork <fp>
left-fork <fk> philo <philo>))

(Busy-chairs ; pre- E

(unit <left-chair> ri ght-fork <fk>))
(Free-forks pre-fork

(unit <fk>))
post-net-relations:
(Busy-chairs ; post-left

(unit <left-c hair> right-fork (NULL <fk>) <fj>))
(Free-chairs ; pos-leave

(unit <leave-chair> ri ght-fork NULL))

Fig.4. The dynamic-object Chair-Politeness.

two busy chairs and an arbitrary number of free chairs with their corresponding
left fork. Transitions are parameterized with the <philo> variable, which repre-
sents that the Chair-Politeness must be synchronized with another dynamic-
object to modify relations between chairs and philosophers.

Following, the Chair-Politeness may be specialized to consider that philoso-
phers may be thinking or eating. Figure b shows the Chair-Eating-Politeness,
which inherits state and activity slots from Chair-Politeness, and adds two new
activities start-eating and end-eating, and a new state slot Busy-forks. It
represents that a philosopher only may start eating if he has a free fork on his
left and another one on his right side. When a philosopher is eating the corre-
sponding forks are removed from the place Free-fork. In this way, his neighbors
can not start eating, and guests may not be introduced next to him.

Transitions

Let us focus in the activity descriptions of previous dynamic-objects. From a
discrete event system perspective, transitions carry out the specification and se-
mantics of CPN transitions. Petri net arc information is supported in KRON by
net-relations represented by two remarkable slots of transitions: Relations from
state slots to transition objects working as enabling conditions are in the pre-net-
relations slot, and relations from transition objects to state slots working as causal
relations are in the post-net-relations slot.

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

7
Chair-Eating-Politeness OFree-chairs

pre-guest

-

-

.
post-leave

intro-table leave-table

pre-right-intro

ht-intro

post-guest
pre-leave
post-left

Busy-chairs

free-fork

{start-eating-politeness
is-a: transition
pre-net-relations:
(Free-forks ; forkl
(unit <left-fork> right-chair <chair>))
(Free-forks ; fork.
(unit <right-fork> left-chair
(unit <chair> philo <philo>)))

Eating-politeness
Chair-politennes

; activities

actions: start-eating, end-eating

start-eating : start-eating-politeness &
end-eating : end-eating-politeness
| states

states: Busy-forks

Busy-forks:
attributeclass: state
valueclass: chair

; other information

post-net-relati .
(Busy-forks ; chair
(unit <chair>))

{end-eating-politeness
is-a: transition
pre-net-relations:
(Busy-forks ; chair-philo
(unit <chair> right-fork <right-fork>
left-fork <left-fork> philo <philo>))

post-net-relations;

(Free-forks ; left-fork
(unit <left-fork>))

(Free-forks ; right-fork
(unit <right-fork>))

start-eating

Busy-forks chair

"chair-philo

end-eating | <philo I
/lfﬁiﬂ‘ka

ight-fork

Fig.5. The dynamic-object Chair-Eating-Politeness.

From a knowledge representation perspective, information about activities
can be considered as declarative knowledge in the ”if/then” rule style (the sim-
ilarities between CPN transitions and rules in rule based systems have been
pointed out in several works [BE86], [BMMV93], [VB90]). The only difference is
that in rule-based languages the enabling conditions on the left hand side of the
rule (lhs), are clearly separated from the causal conditions on the right hand side
(rhs). Nevertheless, the execution of a transition implies removing the enabling
tokens from the input places and putting tokens in the output places according
to the post-net-relations.

Expressions labeling the arcs are represented in KRON as arc expressions
in pre and postconditions. An arc expression is a specification of restrictions on
objects. These restrictions are represented, in a rule style, by a list of component
pairs: the first component is the specification of a slot name or the string unit
denoting an object instance; the second component, composed by one or two
elements, 1s a partial pattern to match the slot value, it can be a variable, a
specific constant value, a function or expression or another arc expression.

Following with the behavior representation of the Philosophy-world, the
activity slots leave, intro, start-eating and end-eating, point to the corre-
sponding transitions that represent activities producing state changes. To illus-
trate the internal structure of a typical transition, let us focus on a transition
prototype from the philosophy-world, which is shown in figure 3 and called

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

start-eating. The value in its pre-net-relations slot is:
(Thinking (unit <philo>)). The first element identifies the state slot Thinking
in the dynamic object. The second one represents the arc expression (unit <philo>)
which is labeling the arc.

KRON variables are identified by angle brackets (e.g., <philo>). As it is
general in rule based systems, variables play a double role:

Specify flow conditions. Arc expressions in the preconditions are interpreted
as patterns that must be matched. They identify a token that must be in a
place slot for a transition to be enabled. For example, the expression (unit
<right-chair> left-fork <fork>) (label pre-right-intro in figure 4)
defines a pattern that matches all chairs in place Busy-chairs having some
value in the slot left-fork. There will be a binding between the variable
<right-chair> and the matched instance, and there will be another binding
between <fork> and the values in its slot left-fork. Additionally, these
bindings can establish equality constraints on other arc expressions of the
same transition with the same variable names.

Specify data flow. Values bound to variables in preconditions can be trans-
ferred to postconditions. Additionally, arc expressions in postconditions can
specify modifications in the transferred data. Information of bound variables
is also used to update slot values of the tokens involved in a firing.

Some particular features may be used in arc expressions to increase its ex-
pressiveness:

— An arc expression may appear as the second component of another arc ex-
pression. This is a pattern to match with the objects that are stored in the
slot. For example, (see label fork2 in figure 5):

(unit <right-fork> left-chair (unit <chair> philo <philo>))

In this case <philo> is bound to the philosopher that is in the philo slot
of the chair stored in the left-chair slot of the fork instance bound to
<right-fork>.

— A function call may appear as the second component of an arc expression.
A function call i1s represented by a list whose first element is the symbol $,
the second element is the function name, and the rest are the arguments.
Functions may be used in postcondition for dynamic instantiation purposes.
For example, (unit ($ make-philosopher)) may down a new instance of
philosopher.

— To facilitate an incremental model design, KRON allows the use of incom-
plete transitions whose missing variables in preconditions must be provided
by transition synchronization (see section 6). These variables play the role
of parameters of the activities provided by the objects. For example, all ac-
tivities of Chair-Eating-Politeness constitute its interface, and they have
the parameter <philo>.

— The keyword NULL may appear in postconditions. NULL deletes all values
from the slot. For example, (unit <left-chair> right-fork NULL <fk>),

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

removes all values from slot right-fork before adding the new value bound
to <fk> (label post-left-intro in figure 4). Additionally, a slot value can be
replaced by another value using a list with NULL and the removed values. For
example, (unit <left-chair> right-fork (NULL <fk>) <£fj>) removes
the value bound to <fk> from slot right-fork of object <left-chair>,
then it adds the value bound to <fj> to this slot (label post-left in figure

1).

Additionally, each transition has a predicate associated. The predicate im-
poses a logical constraint on the transition enabling. It is a Boolean function,

which can only contain those variables that are already in the expressions of

the arcs connected to the transitions. The predicate is supposed to be true by

default.

Sometimes it is useful to execute some action (execution of some particular
subprogram). This is the purpose of a transition method called action. This
method is called each time the transition is fired. The method receives the bind-

ings of the transition variables as a parameter.

5 Instances, classes and inheritance in dynamic objects

The purpose of previous sections was to explain how the dynamic behavior of
different kinds of entities is described in KRON. In this section we will focus on
the use of inheritance as a mechanism to share code and representation. There-

fore, we have considered the inheritance as a subclassing relation. Subclassing
highlights redundancy within a system and the object-oriented decomposition
yields smaller models through the reuse of common mechanisms, thus providing

an important economy of expression. The subtyping relationship has not been

considered. (Different approaches to formalize the behavior preservation between

parent and descendant classes can be found in [BG91] and [BAdC93]).

Object oriented modeling starts by creating a hierarchy of classes, from more
generic to more specialized, whose elements will be further instantiated to build
a particular system model. Frame based languages make emphasis on inheri-

tance issues and they provide not only support for traditional slots and method

inheritance, but also allow the programmers the specification of additional types

of inheritance (overriding, adding, unioning, wrappering, ...).

In our working context of discrete event system domain, entities with similar
state space and behavior are grouped defining a hierarchy of dynamic object

classes. A dynamic object class is a template to construct a composed object,
whose instantiation implies the instantiation of the CPN structure that describes
its behavior. All instances of a dynamic object class inherit the same Petri net with
the same initial marking. Following the same process, transitions with similar
structure and behavior are classified in a hierarchy tree of transition classes.
Therefore, the behavior of a child class is obtained from the inherited Petri
net by adding new transitions and state slots, or providing more specific details
about them. For example, inherited state slots may be specialized with additional

restrictions on the tokens they can hold.

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

The creation of the transition hierarchy requires more attention. Thus, a child
transition class may be specialized in the following different ways:

Adding enabling conditions: The inheritance type of the pre-net-relations
and predicate slots is union. This means that their values are derived by
the and composition of the values that are in the subclass slot and the in-
herited values from its superclasses. Therefore, the net enabling conditions
of a transition class is restricted by defining new values in the pre-net-relation
slot of a transition subclass. Additional enabling conditions may be imposed
on a transition class by adding new values to the predicate slot.

Adding new actions: The inheritance type of the post-net-relations and
action slots is also union. When the transition is fired pre-net-relations
and post-net-relations imply the modification of the respective state
slot values. Therefore, new actions may be defined by adding new pre and
post-net-relations values to a transition subclass. A transition firing also
implies the execution of the action method. The action method may be spe-
cialized in a child transition class by wrapping code before, after or around
the inherited code, or overriding it. Moreover, the code of action methods im-
plies the execution of dynamic object methods. Therefore, the action method
can be indirectly specialized by the specialization of dynamic object methods.

A transition instance is never created directly, but only through the instan-
tiation of 1ts dynamic object. Transition classes in activity slots are instantiated
and replaced by their instances. An important feature of KRON is that the
representation of an activity that is carried out in cooperation among different
entities, 1s collected into only one transition instance. In this case, the state
slots of pre- and post-conditions may belong to different dynamic objects. For
this reason a transition instance inherits all slot values from the transition class,
but pre/post-net-relations add to each inherited net relation a reference to
the dynamic object instance.

A new dynamic object class can also be created by multiple inheritance. In
this case, the subclass inherits several separated nets from their superclasses,
which can be joined to build a more complex one. The connection can be made
by adding transitions and places that model the control flow interaction between
inherited nets. Multiple inheritance facilitates composition of incomplete repre-
sentation behavior (virtual classes) during the model development. This means
that the Petri net underlying a dynamic object class may be incomplete, and
therefore this class should be refined to complete the behavior representation.

Finally, it is important to note that some problems have been detected with
the integration of concurrency and inheritance. In concurrent object oriented
languages, it 1s called synchronization code the code that selects the set of ser-
vices that a concurrent object can execute and that depends on its state; that
is, the enabling conditions of transition objects in KRON terms. The reuse of
the synchronization code in concurrent object oriented languages has been con-
sidered difficult due to inheritance anomaly: synchronization code cannot be ef-
fectively inherited without non trivial class redefinitions [MWY93]. S. Matsuoka

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

and A. Yonezawa identify three kinds of inheritance anomaly: 1) State partition-
g anomaly occurs when the subclass needs to make a partition of the set of
states the superclass can have. 2) History only sensitiveness of states, appears
when the methods in a parent class must be modified because the application of
a method in a subclass depends on the history information, which does not man-
ifest itself in the values of the inherited instance variables. 3) State modification
anomaly, appears when the definition of a subclass requires the modification of
inherited enabling conditions to account for a new action.

KRON mitigates some of the effects of the inheritance anomaly. A KRON
model allows the appropriate separation of the synchronization code (enabling
conditions) from the action (a piece of code) attached to transition objects. Tt
makes the refinement of actions easier, allowing the inheritance mechanism to
override the two parts separately. On the other hand, Petri nets have a guard
based synchronization schema. Thus, the state partitioning anomaly pointed in
[MWY93] does not occur because the addition of new net conditions allows the
differentiation of substates.

Following with the case study, the figure 5 shows how to specialize the
dynamic-object Chair-Politeness. To complete the model, it must be created an
instance of Philosophy-world and an instance of Chair-Eating-Politeness.
Instances of Chair, Philosopher and Fork, and the initial relations between
them, will be created by the constructors of dynamic-objects that execute its
initial-marking method.

6 Dynamic entity connections

The construction of system models in KRON is done incrementally by first, de-
signing isolated entities and then imposing the interactions between them to
compose a bigger subpart of the system model. From a dynamic perspective,
the behavior of an entity is represented by a CPN underlying a dynamic object.
The overall dynamic model will be homogeneous if the dynamic interactions be-
tween dynamic objects are described in the same terms as the internal behavior
of objects. This means that if the interactions are described in terms of places,
transitions and arcs, the behavioral model of the system will be a CPN and the
advantages of using this formal view can be fully assumed. In KRON, the rep-
resentation of interactions between dynamic objects becomes the same problem
as the high level Petri net connections.

CPNs may be connected by merging transitions or places, and by means
of new arcs [Bau88]. In KRON, transition merging has been selected as the
main mechanism to represent the interactions between dynamic objects. The
advantages of this approach will be pointed out at the end of this section. This
approach provides a synchronous communication style that has been adopted by
other works as modular-CPNs [CP92], CO-OPN [BG91] or OBJSA [BdC93]. In
this mechanism, an interaction between two or more objects can be interpreted
as the execution of a joint activity, where each object has only a partial view of

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

- phil Philosophy-worldfl
philo
/- N\ Out
Chair-Eating-Politeness#1 QFree-chairs
pre-gue/x/l “post-leave philo
A - > ~.
[] <philo> intro-table) . I <philo> I Jleave
intro o N
g \
33 N = | % \
S| 3 g S| 5 \
g < T % \
g N S \
L] SR \
philo
\\
‘Busy-chairs . \
Free-forks \
\
\
\ Y
Jork Thinking Qﬁ
free-fork) hilo
A 4
start-eating | <philo> 1 | start-eating
— philo

Busy-forks chair philo
P

Q/ Eaﬁ"@

“chair-philo philo

end-eating [<philo> 10 | end-eating

Fig. 6. Synchronization of dynamic-object instances.

the real activity and its constraints. This interaction implies the synchronization
of the internal behavior of those objects.

To illustrate the possibilities for dynamic entity connections we will synchro-
nize the instances philosophy-world#1 and Chair-Eating-Politeness#1. (See
figure 6). When a philosopher enters or leaves from the philosopher world,
new relations between chairs, forks, and philosophers are defined. The action
intro-table of Chair-Eating-Politeness#1 implies that a philosopher must
occupy a chair, and the action intro of Philosophy-world must respect the
politeness rules. Therefore these actions must be synchronized. In fact, they
could be considered as partial views of the same activity. The result is a merging
transition that synchronizes the behavior of both dynamic entities. In the same
way, the activity leave of the Philosphy-world must be synchronized with
the activity leave-table of Chair-Eating-Politeness. On the other hand, it
is necessary to have two forks to start eating. Therefore, Philosophy-world and
Chair-Eating-Politenes must synchronize its respective activities start-eating
and end-eating.

To support this approach, the dynamic objects interface in KRON is a set of
activity slots. Thus, the transitions of a dynamic object can be internal or inter-
face transitions. Only the interface transitions can be externally synchronized.
Connections between dynamic objects are established by naming the activity slots
that must be related in some manner. The synchronization mechanism generates

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

a new merged transition by multiple inheritance of the originals (for a complete
transition merging, additional mechanisms are supported in KRON to specify
the relations between variables from different transitions whose names have local
scope). The transition generated by the merging replaces the originals in all activ-
ity slots involved in the synchronization. It allows the different dynamic objects
related by a synchronization to maintain the same view over a transition after
the merging.

Two types of synchronization (by transition merging) have been designed
for KRON. Normal synchronization substitutes synchronized transitions by a
unique transition with all pre and postconditions of the original ones. However,
a slightly different case arises when a single activity may be synchronized with
several alternative activities, and these other activities can not be synchronized
with one another. This is the place for a bilateral synchronization, which supposes
a replication process.

Some characteristics of the proposed approach for dynamic entity synchro-
nization are:

1. Synchronized transitions are handled as a single object that belongs to coop-
erative objects. In this way, communication between different entities, from
a dynamic perspective, is supported by the same formalism that defines the
internal dynamic of each object.

2. Synchronized transitions provide a symmetric form of cooperation by an ar-
bitrary number of entities, and no direction of communication is intended.
Transition synchronization provides a higher level mechanism to communi-
cate objects than the classical message passing. Collective behavior of objects
can be described without an implementation model of communication, and
does not restrict the model to the client-server framework. Intuitively, tran-
sition objects are similar to the space tuples of generative communication
[CG8Y]. Tokens may interact through transition objects by inserting tuples
with the bindings produced by arc expressions. Communication may produce
if there is pattern matching between tuples. (In the examples philosopher,
chair, and fork entities interact trough transition objects in this way). A com-
parison of Petri nets and the generative communication can be also found
in [HV96], where Petri nets are used to specify the behavior of the hurried
philosophers based on objects and the generative communication. In this
approach the space tuple is represented by places that hold tokens, whereas
in our approach the space tuple is represented by transitions that holds the
bindings produced by tokens.

3. It may be argued that synchronized transitions violate the encapsulation,
because they have access to the local state of cooperative dynamic objects.
However, a synchronized transition denotes a relation between dynamic ob-
Jects that defines the rules of this violation. As Rumbaugh points out in
[Rum87], a relation is not something to be hidden, but rather, to be speci-
fied abstractly, without imposing an implementation.

KRON also allows the definition of composite dynamic-objects. When a com-
posite is instantiated, the different parts of the composite are instantiated and

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

the synchronization relations between the parts are established. In this way,
KRON may reuse through inheritance and aggregation.

7 Conclusions

In this paper we have presented KRON (Knowledge Representation Oriented
Nets), a knowledge representation schema for discrete event systems (DESs).
KRON is based on the integration of CPNs with frame based representation
techniques and follows the object oriented paradigm. In addition to the features
generally supported by object oriented languages, a set of primitives implement-
ing the CPN formalism is included. CPNs provide the mechanism to describe
the internal behavior of dynamic entities and the interactions between them.
The Hurried Philosophers example has been adapted to highlight some relevant
KRON capabilities.

Most of the approaches integrating objects and HLPNs, extend the HLPN
formalism. The approach adopted here does not extend the CPN formalism.
The frame-based representation of KRON supports the data and methodological
aspects with no need to extend the CPN formalism. So, all the advantages of
the use of this formalism can be profited from working with KRON.

KRON may reuse models through inheritance and aggregation. On the one
hand, KRON uses inheritance as a mechanism to share code and representation.
On the other hand, aggregation is supported by CPN composition. CPNs may
be connected by merging transitions or places, and by new arcs. In KRON,
transition merging has been selected as the main mechanism to represent the
interactions between dynamic objects. This approach provides a synchronous
communication style with all its advantages.

The semantics of the behavioral rules is supported in KRON by a so called
control mechanism or interpreter. The control mechanism interprets the model
to make the net evolve. The implementation of an efficient interpreter of KRON
models may be found in [BMMV93]. In order to interpret the model, transitions
are grouped into conflicts. The interpretation of the model is orthogonal to the
model itself. An only interpreter may execute the model, or it may be attached
an interpreter to each dynamic entity.

A prototype of a simulation tool with graphical display and animation facili-
ties has been implemented on top of a known knowledge engineering environment
called KEE [Int89] from Intellicorp.

References

[Bau8s8] B. Baumgarten. Advances in Petri Nets 1988, chapter On internal and
external characterization of PT-net building block behavior. Number 340
in Lecture Notes in Computer Science. Springer Verlag, 1988.

[BB91] M. Baldassari and G. Bruno. PROTOB: An object oriented methodol-
ogy for developing discrete event dynamic systems. Computer Languages,
16(1):39-63, 1991.

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

[BdC93]

[BACM33]

E. Battiston and F. de Cindio. Class orientation and inheritance in modu-
lar algebraic nets. In Proc. of IEEFE International Conference on Systems,
man and Cybernetics, Le Touquet-France, pages 717-723, 1993.

E. Battiston, F. de Cindio, and G. Mauri. Advances in Petri Nets 1988,
chapter OBJSA Nets: a class of high-level Petri nets having objects as
domains, pages 20—43. Number 340 in Lecture Notes in Computer Science.
Springer Verlag, 1988.

[BDLGV95] G. Berio, A. Di Leva, P. Giolitto, and F. Vernadat. The m*-object

[BES6]

[BGY1]

[Bils9]

[BMS86]

[BMM V93]

[CG89]

[CH94]

[CKR93]

[CP92]

[DG8T]

[DGVI1]

[Eng93]

methodology for information system design in cim environments. [EEFE
Tran. on Systems, Man, and Cybernetics, 25(1):68-85, January 1995.

G. Bruno and A. Elia. Operational specification of process control sys-
tems: Execution of prot nets using orsb. In Proc. of IFIC’86, Dublin,
1986.

D. Buchs and N. Guelfi. CO-OPN: a concurrent object oriented petri net
approach. In Proc. of the 12th International Conference on Application
and Theory of Petri Nets, pages 432-454, Gjern (Denmark), June 1991.
J. Billington. Many-sorted high-level nets. In Proc. of Third International
Workshop on Petri Nets and Performance Models, Kyoto, pages 166179,
1989.

G. Bruno and G. Marchetto. Process-translatable petri nets for the rapid
prototyping of process control systems. [FEEF transaction on Sosftware
Engineering, 12(2):346-357, 1986.

J.A. Banares, P.R. Muro-Medrano, and J.L. Villarroel. Application and
Theory of Petri Nets 1993, chapter Taking Advantages of Temporal Re-
dundancy in High Level Petri Nets Implementations, pages 32-48. Number
691 in Lecture Notes in Computer Science. Springer Verlag, 1993.

N. Carriero and D. Gerlenter. Linda in context. Communications of the
ACM, 32(4), April 1989.

S. Christense and N.D. Hansen. Application and Theory of Petri Nets
1994, chapter Coloured Petri Nets Extended with Channels for Syn-
chronous Communication, pages 159-178. Number 815 in Lecture Notes
in Computer Science. Springer Verlag, 1994.

L. Cherkasova, V. Kotov, and T. Rokicki. Applications and Theory of
Petri Nets 1993, chapter Modeling of Industrial Size Concurrent Sys-
tems, pages 552-561. Number 691 in Lecture Notes in Computer Science.
Springer Verlag, 1993.

S. Christensen and L. Petrucci. Applications and Theory of Petri Nets
1992, chapter Towards a Modular Analysis of Coloured Petri Nets, pages
113-133. Number 616 in Lecture Notes in Computer Science. Springer
Verlag, 1992.

A. Dileva and P. Giolito. High-level petri nets for production system mod-
elling. In Proc. of the 8th European Workshop on Application and Theory
of Petri Nets, pages 381-396, Zaragoza (Spain), June 1987.

A. Dileva, P. Giolito, and F. Vernadat. Executable models for the repre-
sentation of production systems. In Proc. of the IMACS-IFAC Symposium
on Modelling and Control of Technological Systems, IMACS MCTS 91,
pages 561-566, Lille (France), June 1991.

S. English. Coloured Petri Nets for object-oriented modelling. PhD thesis,
University of Brighton, 1993.

(Draft) Lecture Notes in Computer Science (LNCS). 2001, vol. 2001, p. 355-374. ISSN 0302-9743.

[Feh91] R. Fehling. A concept for hierarchical petri nets with buiding blocks. In
Proc. of the 12th International Conference on Application and Theory of
Petri Nets, pages 370-389, Aarhus, 1991.

[FK85] R. Fikes and T. Kehler. The role of frame-based representation in reason-
ing. Communications of the ACM, 28(9):904-920, September 1985.

[HJS89] P. Huber, K. Jensen, and M. Shapiro. Hierarchies in coloured petri nets.
In Proc. of the 10th Furopean Workshop on Application and Theory of
Petri Nets, pages 192-209, Bonn, June 1989.

[HV96] T. Holvoet and P. Verbaeten. Using petri nets for specifying active ob-
jects and generative communication. In Object- Oriented Programming and
Models of Concurrency. A workshop within the 17th International Confer-
ence on Application and Theory of Petri Nets, 1996.

[Int89] Intellicorp. KEE User Guide. Intellicorp, 1989.

[Jen92] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use. EATCS Monographs on theoretical Computer Science,
Springer-Verlag. Edited by W. Brauer, G. Rozenberg and A. Salomaa,
Berlin Heidelberg, 1992.

[Lak93] C.A. Lakos. The role of substitution places in hierarchical coloured petri
nets, thecnical report tr93-7. Technical report, Computer Science Depart-
ment, University of Tasmania, August 1993.

[LK94] C.A. Lakos and C.D. Keen. LOOPN+4+: A new language for object-
oriented petri nets, thecnical report tr94-4. Technical report, Computer
Science Department, University of Tasmania, 1994.

[Mey88] B. Meyer. Object-Oriented Software Construction. Computer Science.
Prentice Hall, Englewood Cliffs; N.J., 1988.

[MWY93] S. Matsuoka, K. Wakita, and A. Yonezawa. Research Directions in Object-
Based Concurrency, chapter Inheritance anomaly in object-oriented con-
current programming languages. MIT Press, 1993.

[PR93] M. Paludetto and S. Raymond. A methodology based on objects and petri
nets for development of real-time software. In Proc. of IEFE International
Conference on Systems, man and Cybernetics, Le Touquet-France, pages
T17-723, 1993.

[Reid1] W. Reisig. Theoretical Computer Science 80, chapter Petri Nets and Al-
gebraic Specifications, pages 1-34. Elsevier Science Publishers B.V., 1991.

[Rum87] J. Rumbaugh. Relations as semantic contructs in an object-orientated
language. In Proc. of the ACM Object-Oriented Programming Systems,
Languages and Applications, OOPSLA’87, pages 466—481, October 1987.

[SB85] C. Sibertin-Blanc. High-level petri nets with data structures. In Proc. of
Workshop on Applications and Theory of Petri Nets. Finland, June 1985.
[SB94] C. Sibertin-Blanc. Advances in Petri Nets 1994, chapter Cooperative

Nets, pages 377-396. Number 815 in Lecture Notes in Computer Science.
Springer Verlag, 1994.

[Vaud7] J. Vautherin. Advances in Petri Nets 1987, chapter Parallel Systems Spec-
ifications with Coloured Petri Nets and Algebraic Specifications., pages
293-308. Number 266 in Lecture Notes in Computer Science. Springer
Verlag, 1987.

[VB90] R. Valette and B. Bako. Software implementation of petri nets and com-
pilation of rule-based systems. In 11th International Conference on Ap-
plication and Theory of Petri Nets, Paris, 1990.

