Abstract—This paper focuses on the development of a method-
ology within a software environment for automating the rule
based implementation of specifications of integrated manufac-
turing information systems. The specifications are initially for-
mulated in a natural language and subsequently represented in
 terms of a graphical representation by the system designer. A
new gpraphical representation tool is based on Updated Petri
Mets (UPN) that we have developed as a specialized version
of Colored Petri Nets (CPN). The rule based implementation
approach utilizes the similarity of features hetween UPN and the
general rule specification language used for the implementation.
The automation of the translation of UPN to the rule specification
language is expected to reduces considerably the life cycle for de-
sign and implementation of the system. The application presented
here deals with the control and management of information flow
between Computer Aided Design, Process Planning, Manufactur-
ing Resource Planning and Shop Floor Control databases. This
provides an integrated information framework for Computer
Integrated Manufacturing (CIM) systems.

Index Terms— Rule base, information system, computer inte-
grated manufacturing, system modeling, knowledge verification,
Petri nets, rule specification language, reasoning, language trans-
lation.

[. INTRODUCTION

N A MODERN FACTORY, besides parts being produced,

there is also a tremendous amount of dara being processed.
For an efficient operation, it is necessary not only to control the
manufacturing processes of products but also to manage and
conirol the information Aow among all the computerized man-
ufacturing application systems that exist in a modern factory.
The emphasis of most of the previous and current research
projects is placed on individual aspects of CIM, such as TRW
[1] on synchronizing the interface between application sysiems
and distributed databases, and the University of [llinois [2] on
developing a framework to perform common manufacturing
tasks such as monitoring, diagnostics, control, simulation, and
scheduling. Their approach aims at developing a generic CIM
architecture, creating a global database framework, or interfac-
ing shop floor activities. However, the future in automation of

Manuscript received September 26, 1991; revised August 3, 1992,

G. Harhalakis, deceased, was with the Systems Research Center, University
of Maryland, College Park, MD 20742 USA,

C. P. Lin was with the Systems Rescarch Center, University of Maryland,
College Park, MD 20742 USA. He is now with the Atomic Energy Couancil,
Taiwan, R.O.C.

L. Mark was with the Systems Research Center, University of Maryland,
College Park, MD 20742 USA. He is now with the College of Computing,
Georgia Instituie of Technology, 801 Atlantic Dr., Aflanta, GA 30322 USA,

P. B. Muro-Medrano is with the Electrical Engineering and Computer
Science Department, University of Zaragoza, Spain.

IEEE Log Mumber 9213304,

a2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, MO, 6, DECEMBER 19494

Implementation of Rule-Based Information
Systems for Integrated Manufacturing

George Harhalakis, Member, IEEE. Chang-Pin Lin, Leo Mark and Pedro Muro-Medrano, Member, IEEE

modern factories will be based on a distributed environment
that needs not only a generic database framework but also a
controller, usually a knowledge rule-based sysiem, 1o control
the relationships between activities within all the computerized
manufacturing application systems. Qur approach is to develop
such a control mechanism, in the form ol a rule-based sysiem,
for managing the information flow among all the existing and
new manufacturing application systems, and to fill the gap
between the high level production management and the low
level factory automation [3]. [4]. Upon the development of
our control mechanism, we have utilized the concept of global
equivalence of distributed data schemata to define the common
data entities and related ‘attributes within different databases
that aim at solving the heterogeneity of data schemata used
by manufacturing application systems. However, in this paper
we do not intend to solve the problem of heterogeneity
of different types of database management systems, e.g.,
relational DBMS and object oriented DBMS. The integration
of these DBMS’s is itself a major research issue in computer
science. We have simply built a prototype of the rule-based
system on a relational DBMS platform upon which most of
the manufacturing application systems have been developed.
As an example, an integrated manufacturing system with
interrelated activities, which have precedence constrainis be-
tween cach other, was developed based on this methodology.
The management and control of information flow achieved by
a Knowledge-Based System (KBS) is what differentiates our
work from most of the other systems, whose primary objective
is to develop a consistent database framework or a standard
communication protocol for data transformation. The KBS,
acting as the control mechanism, accompanied by existing
distributed database management systems is shown in Fig. 1.
INSIM uses a global dictionary to identify the common data
entities and related atiributes among different manufacturing
application systems. The rule-based system is built on top of
a relational DBMS platform (ORACLE). Its commands are
executed directly from the application systems and translated
into SQL to access the database. The rule-based system is
used to control the information flow through data updates and
retrievals by communicating through the global dictionary.
The metadatabase project developed at RPI [6], [7]. applies
the same concept of supporting heterogeneous databases and
introducing a knowledge base using its Two Stage Entity
Relationship (TSER) model. It provides a generic database
framework and a rule-based system for managing and control-
ling the information flow among CIM systems. This rule-based
system is combined with a global data dictionary to capture

104 1-4347/94504 .00 © 1994 [EEE

HARHALAKIS ¢v of : RULE-BASED INFORMATION SYSTEMS FOR INTEGRATED MANLFACTURIMNG

1]}
CAD

ﬂﬂf Y

CAPP SFC

U“& EMR?“D@
M R
=t
[

Information Mow architecture for manufactunng application sysicms

Fig. 1.

the structural and semantical data commonalities among CIM
systems. The two major differences between the Metadatabase
at RPI and our approach are: 1) our database schema and rule-
base are automatically generated from high level specifications
of company policies and expert rules; 2} these high level
specifications are validated by formal tools.

This paper presents a design methodology for transforming
user specifications (company policies and expert rules) into
executable computer code to control the information flow
in a distributed environment with multiple databases. This
methodology reflects the procedure to build a knowledge base
serving as the control mechanism that is detailed in Section
II. It features an enhanced graphic modeling tool—Updated
Petri Nets (UPN}—that is capable of modeling database up-
dates and retrievals, under specific constraints and conditions,
and supports a hierarchical modeling approach by allowing
control abstractions to be used in the specifications. UPN
uses a decomposition hierarchical modeling approach. The
emphasis of this paper is placed, however, on the automatic
translation of the structural representation (UPN) into a rule
specification language that facilitates the implementation stage
and reduces the design cycle of frequently changing rule-based
systems.

A rule specification language is needed for the implemen-
tation of the system. There exist a variety of programming
languages and software development tools: LISP, PROLOG,
PASCAL., and C for general purpose programming purposes;
OPS5 for performing simulation, KEE for knowledge en-
gineering, LOTOS (Language for Temporal Ordering Spec-
ification) by the ISO, for specifying data communication
protocols, services and CIM system architectures, [9], and
SAM by the Mational Institute of Standards and Technology
(NIST) in its Automated Manufacturing Research Facility
{AMRF) project for modeling data and activities in a manu-
facturing environment [10]. More recent research has focused
on object-oriented programming and database management
systems that facilitate the development of new applications
and improve system performance. ROSE developed by the
Rensselaer Polytechnic Institute [11], [12] and KRON (Knowl-
edge Representation Oriented Nets) by the University of
Zaragoza [13] are some examples. The Update Dependencies
Language (UDL) [14] was selected for our implementation
due to the similarity of its features (data, facts, and rules)
and the entities (places and transitions) of UPN. This en-
ables the automatic translation between them. In addition,

x93

UDL is designed especially for rule specifications and data
updates.

Another comprehensive methodology for the analysis, de-
sign. and implementation of produciion environments, called
\f*, was developed at the National Research Council of
Canada [15]. [16]. Like the INSIM methodology presented in
the present paper. M* is a complete methodology covering all
aspects of enterprise modeling and analysis, conceptual design.
and implementation design of production environments. In
contrast o INSIM, all phases of the A* methodology arc
manual, whereas INSIM provides a computerized graphical
specification ool for UPN, a computerized validation tool
for UPN specifications, and a fully automated translation
of UPN specifications into UDL rules that can be run as
an application on a relational database system. With the
computerized support for specification and validation, and
the automated translation of UPN imo UDL that virtwally
eliminates the implementation phase, we expect a considerable
reduction of the life cycle of the INSIM methodology when
compared to other methodologies, although this has yer 1o be
proven in large scale experiments.

As an aliernative to translating UPN specifications into UDL

les. a direct implementation of Colored Petri Nets could
{2 considered, as in [17]. We chose the former approach for
several pragmatic reasons. First, UPN specifications can be
translated into UDL specifications as will be demonstrated in
this paper. Second, a UDL interpreter has been implemented
and is available to our project. Third, this UDL interpreter runs
on relational database systems that have proved to be a solid
foundation for other projects on manufacturing information
systemns that manage large amounts of information [18], [19].

A UDL interpreter runs as an application on a relational
database system. It interprets the rule-base through backward
chaining and has a revocable control strategy. Rules on other
databases are invoked through remote procedure calls.

This paper is structured as follows. The second section
presents the overall design methodology of our INformation
System for Integrated Manufacturing (INSIM), uts specifica-
tions and architecture, which is more extensively described
in [4]. The third section describes the Update Dependencies
language used for the implementation of the rule-based system.
The fourth section details the implementation strategy, the
translation procedure, and provides examples of the automatic
translation between UPN model and UDL code, based on an
example of a rule specification in the CAD/CAPP/MRP II/SFC
integrated sysiem. The last section summarizes our conclusions
with recommendations for future work,

[I. KNOWLEDGE BASE DESIGN METHODOLOGY

Owr research, aiming at linking product and process de-
sign, manufacturing operations and production management,
focuses on the control of information flow between each
of the key manufacturing applications at the factory level,
including Computer Aided Design (CAD), Computer Aided
Process Planning (CAPP), Manufacturing Resource Planning
(MRP 1), and Shop Floor Control (SFC) systems. This linkage
between manufacturing application systems involves both the

PR

B9 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

Modeling, Analysis, and Feed Back
"Company Palicy™
Knowledge st
Acquisilion Syt
INPUT RESEARCH TASKS OuTPUT

Fig. 2. Knowledge base design methodology.

static semantic knowledge of data commonalities and the
dynamic control of functional relationships. The former are
represented by the common data entities, to which operations
in each application are applied. These data entities are derived
from the high level specifications (Section [V-A). The data
entities include Parts and Bills of Material in CAD (static),
Paris, Bills of Material, Work Centers and Routings in CAPP
(static), Parts, Bills of Material, Routings, Work Centers in
MRP II (static), Manufacruring Orders in MRP 11 {dynamic),
Manufacturing Orders in SFC (dynamic).

Our design methodology is depicted in Fig. 2 [4]. It stans
from user defined rule specifications—"0,"” reflecting a specific
company policy for the management and control of informa-
tion flow, which is then modeled using a special set of Colored
Petri Nets—UPN (Updated Petri Nets) and a hierarchical
modeling methodology—"1." The next step is to convert the
UPN model into a set of General Petri Nets (GPN)}—"3"—for
model validation purposes, and to feed the results back to
the user to resolve 1) conflicting company rules and 2)
errors introduced during the modeling phase—"4." Once all
subnet, each representing a set of user specification, have been
validated, they will then be synthesized into a coherent net
representing the integrated system specification—"2." After
the integrated model has been validated, a parser translates
the UPN model into a rule specification language—"5." The
end result is a software package that controls the data flow
accessibility between distributed databases. In short, the input
is a set of company rules and the output is a set of rules that,
through backward chaining and a revocable control strategy,
is used to conirol aperations, accessibility and updates of data
within the manufacturing applications involved.

A. Knowledge Acquisition (Company Policy)

The design of the model is based on the information flow
established between all the manufacturing applications, namely
CAD/CAPP/MRP II and SFC. The expert rules embedded
in the knowledge base are extracted from company exper-
tise, which can be obtained through a number of individual
interviews and group meetings with experts from all manu-
facturing application systems to be integrated, and managers
responsible for making company policy. Therefore, substantial
effort may be required for gathering all expert rules to form
the knowledge based system. However, since we are here
to develop and demonstrate our design methodology. our
prototype only includes limited rules extracted from our own

industrial experience and other industries involved with this
and other projects in the CIM Laboratory.

B. Structured Modeling of the Domain Knowledge

1) Evolution of Updated Petri Nets: Petri nets have been
applied to most sysiems in representing graphically not only
sequential but also concurrent activities [20], [21] . Because of
their mathematical representation, they can be formulated into
state equations, algebraic equations, and other mathematical
models. Therefore, Petri nets can be analyzed mathematically
for the verification of system models and are ideal for mod-
eling dynamically and formally analyzing complex dynamic
relationships of interacting systems. Although General Petri
nets initially adopted in this research can in principle handle
the modeling of the domain knowledge, it has become nec-
essary 1o define more complex semantics in order to handle
the increasing complexity of it, due to the involvement of
more applications and their entities. Hence we have developed
the Updated Petri Net (UPN), which is a specialized type of
Colored Petri Nets (CPN) [22], and a decomposition hierar-
chical modeling methodology with a systematic approach for
the synthesis of separate nets. The use of UPN allows the
mode] designer to work at different levels of abstraction. Once
we have this net we can selectively focus the analysis and
validation effort on a particular level within the hierarchy of
a large model.

A UPN is a directed graph with three types of nodes:
places that represent facts or predicates, primitive transitions
that represent actions, and compound transitions that represent
metarules (subnets). Enabling and causal conditions and infor-
mation flow specifications are represented by arcs connecting
places and transitions.

Formally, an UPN is represented as: UPN = (P, T,C,
I=, It My, Iy, MT), whete:

1) PT,C, I, I, My represent the classic Color Petri net
definition. They identify the pant of the information
sysiem that provides the conditions for the information
control. Only this part of the UPN net is used in the
validation process. These terms are defined as follows
[22]:

a) P = {p, --.pn} denotes the set of places (repre-
sented graphically as circles).

b) T = {tj,---,tm} denotes the set of primitive
transitions (represented graphically as black bars).

c) PNT =0and PUT £ B

d) ¢ is the color function defined from P U T into
nonempty sets. It attaches to each place a set of
possible token-data and to each transition a set of
possible data occurrence.

e) I~ and I are negative and positive incidence func-
tions defined on Px T, such that I~ (p, t), [*(p,t) €
[{?Et}ﬂ,ms - C{}J}MS] g for ¥(p,t) € Px T,
where Spg denotes the set of all finite multisets
over the nonempty set S, [Cl{tjus — C(p)ms]
the multiset extension of [C(t) — C(p)ms] and
[-- -]z a set of linear functions (although, any lincar
function is allowed in the general color Petri net,

HARHALAKIS o al - RULE-BASED INFORMATION 5YSTEMS FOR INTEGRATED MANUFACTURING

MRF IT
dBS Mwolwoid=woid®)}
M
sk Mwo{weidaweids
desedest depadeps,
sts=h gta=nal
EMwe G

t1: request and read weld
t2: write error message and restart
t3: write error message
t4: requent other information
th: update work center record in MRF 1T dBase
with ste=r, and additional data,
insert & work center record in CAPF dBase

Fig. 3. Subnet of the scenario “Release of a work center in MRP [L”

only projections, identities and decoloring functions
have been used so far in our models).

f) The net has no isolated places or transitions:
Yee P,3teT: I (p,t)#0vIt(pt)+#0and
VieT,3pe P: I (pt) Z0VIT(pt) #£0

£) My the initial marking, is a function defined on P,
such that:
Mo(p) € C(p),¥p € P.

2y I, is an inhibitor function defined on P x T, such that:
L(p,t) € [C(t)ms — C(p)msle. ¥(p,t) € P x T.

3) MT = {mty,---,mi;} denotes the set of compound
transitions (represented graphically as blank bars); these
are transitions that are refined into more detailed subnets.

We have divided the representation of the domain knowledge
in the following four groups: Data, Facts, Rules, Metarules.
Data and relations between different data are used in relational
database management systems. Facrs are used to declare a
piece of information about some data, or data relations in
the system. The conirol of information flow is achieved by
Rules. Here, we are considering domains where the user
specifies information control policies using “if then™ rules.
Rules are expressed in UPN by means of transitions and arcs.
Metaknowledge, in the form of metarules, is represented by
net aggregation and hierarchical net decomposition (compound
transition)., and will be detailed below.

- "Wh

e —

()Pl Py)

Peolweld=woeld® des=dess,
depmdep® cap=caph sloaw)

EPwc

¥1ip_initk user starts the transaction

pZ woid is provided

p work center ID does not exdist in MRP 1T

pd: work center already han v status in MRF 11

Pl all the necessary data ie provided

p_ret: retarn of the procedure call

EMwe: axistence of work center in MRP IT dBasa
NMwe: non-existence of work center in MEP II dBase
EPwe: exdistence of work center in CAPP dBase
NPwe: non-existencs of work center in CAFPF dBase

An example that represents the release of a work center in
MEP II is explained in natural language below and is modeled
in UPN, as shown in Fig. 3. Invoking the work center release
transaction in MRP II also triggers a set of consistency checks:

if the WC L.D. exists in MRP II and

status = hold and

blank data entries are filled;
then

WC status — released and

skeletal WC record is created in CAPP and

status in this record — working

a) Dara: In an information system environment, the user

needs to refer to atomic data, and establish relations between
different data by structuring information into composed data
objects. UPN allows the specification of atomic and composed
data objects. As an example, let us suppose that a work center
record in MRP II can be in one of two different status: r
(release), k (hold). An atomic data object is represented by
the status set: sts = {r,h}. Furthermore, composed data
objects used in UPN are a subset of the Cartesian product
S %83 x8,, where 5; is a set of atomic data. An example
of a composed data object is illustrated by the work center
relation in MEP II with the record name as Mwe. Due 1o the
specialized domain of this representation schema and database

896 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 6. NO. 6, DECEMBER 1994

TABLE 1
DaTa INFORMATION
Attribute | Color sel DB data type Deecriplion
weid WCID | wentification wlentification number
des DES text description
dep DEFP text department
cap CAP integer capacity
ata MS5TS {h, =]} [hold, releass) wark center status code
whe MS5TE | {na,av} (not avail., avail) | work center slale code
res RES text resource code
wadd ESD date effectivity start date
Complete data structure for work centers in the MERP 11 database
Muwe{wead, des, dep, cop, s, ste, res, exd)

update, a special syntax is used to identify database relations:
{R){{A1}, -, {An}), where {R) is the database relation and
{A;} is the dth anribute of that relation. An example of the
work center relation in MRP [I is listed in Table L

b) Facis: Facts in UPN will be represented by places
and tokens in these places. The fact asserted by one place
is determined by the place name and its content (the colors
of tokens in it). We represent facts about a work center
record in MRP II with two places: EMwe, to describe
the records that have been already introduced in the MRP
Il database, and N Mwe, which expresses the negation of
this fact. The UPN syntax of a fact within the database
is (R)({(A1) = (Vah),---,(4a) = (Val,)), where (R}
is the database relation, (A;) is the dth attribute of that
relation, and (Val;} is the value or a corresponding variable
of the ith amnribute. These facts can be seen in Fig. 3 where
they are used to represent some user specifications (places
P1: P2, D3, P4, P5. N Mwe, EMwe, N Pwe and EPwe).

c} Rules: Rules are expressed in UPN as the combination
of two entities: transitions and the arcs with their associated
functions connecting the transition with its input/output places.
Arcs identify information flow and flow conditions. UPN
provide different types of arcs: Enabling arcs are directed arcs
that connect a place to a transition and define a precondition
for the transition to be fired. They indicate which data must
mark each place in order to enable a transition. In order to be
closer to the formal view of the net, let us focus for example
on transition {5 in Fig. 3. First, the color sets for the involved
places and transitions must be identified:

C(EMwc) = MWC = WCID x DES x DEP x CAP
*«METS x MSTE x RES x ESD

C(NPwc)=WCID

C(EPwc) = PWC = WCID x DES x DEP x PSTS

Clps) =WDDCS =WCID x DES x DEP x CAP

Clts) = MWCSDD = WCID x DES x DEP x CAF
xMSTE x RES x ESD x DES
xDEFP

Color sets WCID, DES, DEP,CAP, MSTS, M5TE,

RES ESD,PSTS are as specified in Table 1.

Functions in I~ and I* are defined in terms of lambda
expressions having the form f(c) = A(V)exp(c), where
¢ € C(t); we follow the notation used in [22]. For transition
ts,V and ¢ € MWCSDD can be represented as follows:

'i.’=wcz'd#, des0, depl), cap, mstel), resl), esdl), des#, depd#

and
¢ = weid, deso, depo, cap, msteo, reso, esdo, des, dep

The enabling arcs for {5 are:

weid#
3 h - des# .
) I7(ts,ps)iexp = B MV)exp €
cap
[MWCSDDys — WDDCSys|p such that

AMV)exp(c) = weid, des, dep, cap
2y I (ts, EMwe):exp = [weid = weid#], M(V)exp €
[J'rfWCSDDMS — ‘Mwlf:_ugij_, such that A(V)
expl(c) = weid,despo,depo,—, — msteo, reso, esdo
3) I (ts, NPuc)iexp = [wecid#], MV)exp €
[MWCSDDpys — WCIDys|p such that
MV)explc) = weid
Causal arcs are direcied arcs that connect a transition to
a place and define a post-condition for the transition. Causal
arcs describe modifications to be performed to the state of the
net when a transition is fired, and they indicate which colors
must be added to a place on firing. For example, these are the
causal arcs for transition {5:

weid = weidFE
’ des = des#t
1) It (ts, EMwc):exp = | dep=dep# |MV)exp €
cap = capif
sis=r

[MWCSDDys — MWCys), such that A(V)exp(c)

= weid, deso, depo, cap,r, msleo, reso, esdomsieo,

reso, esdo
weid = weidd
Al .|'_|',g = f.llva e
2) FH(ts, EPwc):exp = :ie:;z de;i AV)exp €
sts = w

[MWCSDDps — PWCpys] such that A(V Jexp(c)
= weid des, dep, cap, w
Checking arcs indicate which data must mark each place

in order to enable a transition but not remove data. It can
be represented as an enabling and causal arc together. The
arcs connecting E'Mwe and t4 is an example being shown in
Fig. 3. Additional predicates can be attached to the transitions
that represent additional conditions applied on the values
of variables used in the surrounding arcs. For example: a
predicate, cap# < 1000, may be attached to transition {4 to
assure that the capacity entered by the user is within a valid
range.

d) Metarules: Metaknowledge and hierarchical net de-
scriptions are represented by Metarules (expressed by com-
pound transitions of the UPN) and mainly used in UPN as a
mechanism to define subnets. They are used in two different
directions 1o allow a structural and hierarchical composition
of the domain knowledge:

Horizontal metarules relate rules at the same level of
abstraction and allow the aggregation of rules under specific
criteria. For example, the relationship of rules shown in Fig. 3
is a horizontal metarule. The formal representation of that

HARHALAKIS e al: RULE-BASED INFORMATION SYSTEMS FOR INTEGRATED MANUFACTURING 97

TABLE Il
NEGATIVE [NCIDENCE FUNCTIONS
= o1 12 I3 134 s
E WCID MWL MWCEC MWCSDD
NMwe | WCID | 0 [weidd]]] i P e
wetd = weed g |
EMwec | MWC | 0 0 wit; :':J# ji:;ﬁ:;i [weid = weidé# |
sis=h
NPwe | WCID | 0 0 0] [weid#]
EPwc | PWC 0 0 0 0 0
Pl E abs 0 1] 0 0
P12 WCID 0 Jweid#] [urcid] [reeid#] 0
Pr3 WCID il 0 0 0 0
P2 WCID 0 0 i 0 0
weidg
des#
pas | WDDC | 0 0] 0 dep
cap |
TABLE 111
PosmrivE INCIDENCE FuNCTIONS
7 13, tyz tz 3 a5 T
E WCID WS T L T — Ao
NMwc | WCID i [weid#] [1] [} i
) _ weid = weid# “Ei ; :::;#
EMwe | MWEC i o [weid = weid# des f desg il
ss=r¥ dep = dep# el
sis=h i
fles=r
NPwe | WCID 0] 0] 3]
= [weid = weidg |
des = desft
EPwe | PWC i a 0 0 dep = dep#
cap = cap
fleg = w
Pai E 0 abs 0 0 0
P2z WCID | [weid#] 0 0 0 o
Pu3 WCID i [areid] 0 0 0
pra | WCID 0] [weidd] 0 0
- il
deaff
pas | WDDC 1] L1} 0 depit 1]
cap#t

subnet is specified by its incidence functions shown in Tables
Il and III, where:

E = I&}

MWCSC = WCID x DES x DEP x CAP
xMSTE x RES x ESD x DES
xDEP x CAF

WDDC =WCID x DES x DEP x CAFP

Vertical metarules establish relationships between one rule
and other rules that define knowledge at a lower level of ab-
straction and allow the structure of rules to form an abstraction
hierarchy.

A UPN consists of all the features described above and is
currently used to represent the rules of the domain knowledge
for manufacturing integration. The behavior of it is based on
the firing of the transitions both sequentially and concurrently.
A transition, which has in all its input places tokens satisfying
the corresponding arc expressions and the predicates of the
transition, is enabled and is subjected to be fired (executed).
The results of firing one transition are the removal of to-
kens corresponding to the emabling arc functions from its

input places and the addition of tokens corresponding to the
causal arc functions to its output places. However, the tokens
corresponding to the checking arc remain unchanged.

An example of transition firing is shown in Fig. 3. Transition
t4 is enabled if there exists one token in place pp with the
color of weid# and one token in place EMwe with the color
Muwelweid = weid#,des = desd dep = dep#,sls =
h,ste = na). After the firing of this transition, one token
with the color of weid# will be removed from place ps and
one token with the color of weid#, des#, dep#, cap#, will
be added into ps.

2} Hierarchical Modeling Approach: Generally speaking,
any “company policy™ starts from the specification of general
global rules that describe aggregate operations for a given
entity within the system. These rules are then further refined
into more detailed specifications on a step-by-step basis, until
no aggregate operations are left. In an attempt to assimilate
this concept a hierarchical modeling method using UPN has
been developed that allows the system designer to start from
abstract plobal nets and continue with successive refinements

L] IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, WOL. 6, NO. 6. DECEMBER 15934

Fig. 4.

Example of call between UPN subnets.

until the desired degree of detail has been reached. In additon,
company policies are usually provided for one entity at the
time. Hence, a technique is needed to synthesize all scenarios
to form a coherent net representing the unified company-wide
policy for all entities in the system.

Some work in hierarchical representations using Petn nets
has been done for various applications [13], [24], [25], [26].
A hierarchical modeling methodology facilitates the modeling
task, and it incorporates:

Top-down stepwise refinement technique for the modeling of
each scenario from an abstract and aggregate level 1o a detailed
level. This approach necessitates the development of new Petri
net modeling entities that include two types of transitions as
mentioned in the previpus section; one o represent primitive
rules, and the other to represent metarules that can be further
refined into subnets. The connections are represented by calls
from one compound transition of the net at the abstract level to
the subnets at the more detailed level, and an example is shown
in Fig. 4. The transition, where the call was made, is formed
by a calling net that contains one input transition (ti), one
waiting place (pw), and one output transition (to}. There
are, for each subnet being called, an arc connecting the input
transition and that subnet, and a returning arcbhack to its output
transition. The interface between the input transition and the
subnet being called is a place, representing the initiation of the
subnet. The interface between the output transition and that
subnet is a place, representing the satisfaction of the subnet,

Synthesis technigue for synthesizing separate nets, which
represent different scenarios of the system, to form a coherent
net. Our modeling approach is capable of incorporating the
modeling of the databases of the manufacturing application
systems involved, using UPN, by defining the database states
as global variables. We interface the application procedures
{(company policy) through the default modification procedure
{system dependent) and places representing database states,
and we synthesize nets through them systematically. More
details can be found in [4].

C. Knowledge Verification

One of the major objective of creating a KBS using Petri
nets is the ability of validating the KBS mathematically

and systematically. Completeness (dead-end rules, unfirable
rules), consistency (redundant rules, subsumed rules, under-
constrained rules), and conflicts, are the major issues in
knowledge/rule validation [27]. [28]. The incidence matrices
of Petri nets representing the rule base can be used to perform
some of these validation checks and verify them with the
aid of specific domain knowledge. Several other analysis
techniques for Petri nets, including. reachability trees, behav-
ioral mets, and net invanants, are also used [21], [29]. The
net invariants, which represent mutually exclusive conditions
within the “company policy,” can reveal logical conflicts in
the specification of the original rules and possibly errors
introduced during the modeling process. The reachability tree
can be used to detect any deadlocks or inconsistencies in the
model. The behavioral net can be used to detect redundancies
in the net and is a useful tool for reducing the complexity
of the model. The programs for computerizing these analysis
methods have been developed and applied extensively. Some
reduction rules [30] have also been investigated for reducing
the complexity of nets prior to the analysis phase [4].

However, these analysis technigues were initially developed
for Generalized Petri Nets (GPN), and do not apply to Colored
Peri Nets (CPN). since the latter are characterized by a
great diversity of linear functions that are associated to their
arcs. Therefore, analysis algorithms for GPN that use integer
matrices ase not applicable to CPN. To overcome this obstacle,
we have taken the approach of unfolding UPN into GFN
before they are analyzed [4]. The conversion of UPN into
GPN include two major steps: first, an abstracrion procedure
that eliminates the identification number of each data enfity
and forms one representative UPN for each generic data entity
(e.g.. part, machine, etc.); second, an wunfolding procedure
that unfolds places, transitions, and arcs, to as many places,
transitions and arcs as necessary, and forms the equivalent
GPN suitable for analysis purposes.

0. Implementation

We have adopted a fairly new concept in systems integra-
tion, known as database interoperability. It is being realized
through the development of the Update Dependency Language
(UDL) in the Department of Computer Science, at the Uni-
versity of Maryland [14]. Database interoperability can be
described as the concatenation of the schemata of each of
the databases of the application systems, along with a rule
set constructed for each separate database, called update de-
pendencies. These update dependencies control inter-database
consistency through inter-database operation calls. We propose
the use of UDL as a special rule specification language, to be
used for the implementation of our Knowledge Based System.
The specifications of UDL and its features are described in
the following Section IIL

M. THE UPDATE DEFENDENCY
LANGUAGE, SYNTAX AND SEMANTICS

The Update Dependency Language (UDL) is a means to
specify and control the semantics of a database under update.
A set of update dependency procedures give a declarative

HARHALAKIS or o : RULE-BASED INFORMATION SYSTEMS FOR INTEGRATED MANUFACTURING L]

release Wec(wcid=Woid,dea=Den,depaDep, cap=Cap)
— variVeid),

write('Enter wcid'),

read{Wcid),

releass Muc{wcid=Wcid).

e momvar(Weid) A rMec(weid=Veid),
write{ 'Work centar ID does not exist im MRF II, enter again®, Wcid),
releasns Moo,

— monvar{Wcid) A Mec{wcideWcid, stas=y)

write{ 'Work center already has "'r’" states in MRP TI°, Wcid),

— ponvari{Wcid) & war(Cap) A Mwc{wcid=¥cid,des=Des,dep=Dep, ste=h),
write{'Enter capacity'l).
read{Capl,
release Mwc(wcide=Wcid,des=lea,depsDap,cap=Cap).

—= ponvar{Weid) A oonvar(Des) A nonvar{Dep} A noovar{Cap),
ujlata H"(Ici.Hci.d,lf.l-ll:-cid-\‘c:i.d.c.lp-f.lp.ltlrr‘.l.
insert Pec{ecid=icid,des=Des ,dep=Dep, cap=Cap ste=v),

Fig. 5. UDL code for the scenano “Release of a work center in MEP 1.7

operational specification of an update of a relation in terms of a
set of allernative sequences of implied updates of the relation,
and possibly of other relations, and specifies the conditions
under which the implied updates must succeed for the onginal
one to succeed.

The syntax and semantics of the language are formally
presented in the following subsections. In Section IV, in
addition to the translation algorithm from UPN o UDL, we
provide a number of examples of how the scenaric used
throughout this paper is translated into the formalism presented
here.

A. UDL Syntax

Each relation and view defined in a relational database has
associated with it procedures for the three database modifi-
cations: insertion, deletion, and update. In addition, a set of
application procedures for each relation may be defined, or
as is the case in this paper, automatically generated by the
translation from UPN to UDL.

Procedures have the following form:

G.R[A] = V[."',J"I-n = V“[;A]_ =“'r|."'.
— (?I-()I..'I.' o .{J]_,u,

Ar{] erl .”

— Cony Oty s Do -
where [| indicates an optional element.

A procedure is uniquely identified by its operation type ()
and the name R of the base relation or view for which it is
defined. The type of a modification procedure is either inserr,
delete, or update; the type of an application procedure is a
user-defined name. The formal parameter list, required for all
procedures, binds the values of relation R's attributes A, 1o
the variables Vi, 1 < 1 < n. The replacement parameter list,
used only in update procedures, binds the replacement values
for relation R's attributes A; to the variables Wi, 1 <i < n,

As an example, an application procedure named release,
is applied on the work center relation in the MEP II data-
base and involves two modification procedures: insert and
update. The example of releasing a work center record in
MRP II, is shown in Fig. 5 and discussed in detail below,

The body of a procedure consists of a set of procedure
altermatives, each with the elements:

1} a condition O, 1 < ¢ < m, on the database state; and,

2) a sequence of procedure invocations (0 ,-- (%, .1 <

i < m.

Condirions are safe expressions |[31]. [32] formed through
conjunction and negation of the following atoms (parenthesis
are used to alter the default precedence of operators):

1}y Tuple existence resis with the form, R{A; = Vi, -,
Ag = Vi), where R is the name of any base relation
or view defined in the database, A;. 1 < 1 < &,
are attribute names of R, and V;, 1 < 1 < k, are
constants or variables. The relation, M we, used in the
above example represenis the work center record in
MRP 1l database and it contains the following auribues:
weid, des, dep, cap, sts, ste, res, esd. A wple existence
test evaluates to true if there exists at least one twple
in relation (or view) 7, such that, for every instantiated
variable 1, the value of attribute A; is equal 1o the value
of Vi. A test of the existence ol a work center record
in MRP II with work center identification number Weid,
would have the following form:

Mwc(wcid = Wcid, des = Des,
dep = Dep, cap = Cap)

Every uninstantiated variable 1/, in this example Des,
Dep, and Cap, will be instantiated as a result of the eval-
uation. The instantiated variables act as selection values
and the uninstantiated variables act as either join or
return value variables. Similarly, the tuple nonexistence
tests are represented in the following form: ~ R(A; =
Vi.---, A = Vi). A test of the nonexistence of a work
center record in MRP II is shown in the above example
a5

~ Mwc(wcid = Wcid).

2) Comparisons of the form, X # Y, where £ is a compari-
son operator (<, <, =, >, >)and X and Y are constants
or variables. A comparison evaluates to true if the
algebraic relation # holds between X and Y.

3) The empry condition, It always evaluates to true.

4) Negative or positive variable instantiation resis with the
form, var(V;) or nonvar(V;). where V;, 1 < 1 < n, are
variables introduced in the head of the procedure. The
negative instantiation test evaluates to true if the variable
V; is not supplied in the invocation of the current
procedure. The positive instantiation test evaluates to
true if the variable V; is supplied in the invocation of the
current procedure. In the above example, var(Wcid) and
nonvar{Wcid) are used to test the negative and positive
instantiation of the variable Weid.

5) Existenrtial gualification, exists V7 ---V, C. An existen-
tial qualification evaluates to true if there is at least one
substitution of values V;, 1 < ¢ < n that satisfies the
subcondition ', which cannot contain any instantiation
tests. There must be at least one occurrence of each V;
that is free in C.

LU IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING. VOL. 6, NO. 6, DECEMBER 1994

Procedure invocations have one of the following forms:

1} an applicarion procedure invocation has the form: (e,
and fj are values of the respective attribute)

(user defined name}R(A; = e1.--, Ar = ex; A =
fiioo- Ae = fil])
In the above example. the application procedure in-

volved is:
release Mwc (wcid = Wcid, des = Des, dep
= Dep, cap = Cap)

2) insertion and deletion procedure invocations have the
forms:
insertR(A, = ey,---, A =) and
delete (A} = ey, ---, Ay = e,), respectively.

In the above example, the insertion procedure involved
15

insert Pwc(wecid = Weid, des = Des, dep
= Dep, cap = Cap, sSts = W)

3) update procedure imvocations have the form:
updateR(Ad; = e, -, A = ep; A1 = 1,0 A =
i)

In the above example, the update procedure involved is:
update Mwc (weid = Weid, sts = h; weids=
Wcid, cap = Cap, sts = rj

4) physical insertion, deletion, and updare invocations have

the forms:

insR{A; = ey, -, An = e,),

delRiA; =e;,---, Ay = €,), and

updR{A; =€), -, An =€en; A1 = f1,o 7 dn = fn).
5) primitive ifo operations for read and write, and the

operation fail are also included in the update dependency

formalism.

In the above example, the primitive ifo operations in-

volved include

write('Enter weid!)

read (Weid)

The procedure abstraction/encapsulation hierarchy enforced
by the syntax of the update dependency formalism is illustrated
in Fig. 6. There are three levels in the hierarchy. The bottom
level corresponds to the physical operations; the middle level
corresponds to the modification procedures; and the top level
corresponds to the application procedures. Notice that physical
insertion, deletion, and update invocations on a base relation
i are only allowed from insertion, deletion, and update
procedures on H, respectively.

Notice that physical insertion, deletion, and update, ins, del,
and upd, respectively, on a relation FE can only be invoked
from within insertion, deletion, and update procedures on
the relation R, respectively. Furthermore, physical insertion,
deletion and update, are not available on views; procedures
for views are specified through the invocation of insertion,
deletion and update procedures on the base relations the views
are defined from. Finally, procedures may call each other and
may call themselves recursively.

In the algorithm and examples in Section IV, we utilize
the procedures at the application and modification procedure
levels only; we assume that the DBMS has provided the
implementation of modification procedures, which work as the

insert Ri..) deleie 5(..)
.. insert R{..) =1 S delese 5(..)
delee §(..) —— ——insert RL..)
. iR] | del S(..)
B 5

Fig. 6. Procedure abstractionf/encapsulation hierarchy.

corresponding physical operations. In other words, we have
assume that procedures inserr, . delete, and update are working
as operations ins, . del, and upd, respectively.

B. UDL Semantics

Update dependency procedures are executed by backwards
chaining and a revocable control strategy. The execution of
a procedure can be depicted by an AND/OR graph. The
AND nodes are those whose executions are tied together
by an arc; the OR nodes are those whose executions are
not tied together by an arc. Each execution of an OR node
represents the execution of one procedure alternative. The
ordered sequence (left-to-right) of executions of an AND node
represents the execution of the elements of one procedure
alternative; the first represents the evaluation of the condition,
and the following represent the executions of the invoked
procedures. A ROOT node represents the execution of a user-
invoked procedure. A LEAF node represents the evaluation
of a condition, the execution of a physical insertion, deletion
or update, or the execution of an ifo operation. An OR node
succeeds if one of its executions succeeds. An AND node
succeeds if the evaluation of its condition returns the value
TRUE and the execution of each of the procedures it invokes
succeeds.

When a procedure is invoked, then its formal parameters are
bound to the acrual parameters. The scope of a variable is one
procedure. Conditions are submitted to the database system as
queries, thus the order of evaluation of atoms is determined
at run-time. The evaluation of a condition returns the value
TRUE if the query commesponding to the condition returns a

HARHALAKIS e al.: RULE-BASED INFORMATION SYSTEMS FOR INTEGRATED MANUFACTURING Q0

non-empty result; existentially quantified variables are bound
to values that satisfy the query.

The execution of a physical insertion, deletion or update,
and the execution of an ifo operation always succeed,

The selection of execution of procedure altematives is non-
deterrninistic and executions of procedure alternatives may
be done in parallel. However, the effects of only one of
the alternative will be seen when the procedure succeeds.
Furthermore, while an alternative is executing. it will only
see database updates that have occurred on its execution path;
it will not see database updates from other alternatives that
mighi be executing in parallel. If a procedure execution fails,
ie:, none of its altematives succeed, then the database is left
completely unchanged by the procedure invocation. Conditions
are submitted to the database system as queries, as mentioned
above.

IV. TrawsLaTION OF UPN TO UDL

In this section, we focus on the implementation of the user
specifications. Once we have a structured and formal view of
these specifications, we need to translate them 1o an execution
language. Starting with an UPN we attempt to create a program
capable of satisfying all specifications represented in that net.

User specifications do not necessarily need 1o be concerned
with some problems that are already managed by the existing
computer software technology. For example, database man-
agement systems are capable to deal with problems related
to the concurrent access to the database; furthermore, if one
update operation can not be successfully completed no part of
that operation is performed. Therefore, these issues need not
be part of the model

This section describes first the translation of particular fea-
tures of UPN to UDL, then proposes the translation procedure,
and finally demonstrates the generation of UDL codes with
examples.

A. Data in UPN as UDL Relations

The information flowing through an UPN net can be atomic
data, although this atomic information can be aggregated into
more complex data structures,

Atomic data and its data set can be translated o UDL as
domains. For example, the data set of a work center status in
MRP II (which can have only two different values, i for hold,
and r for released: STS = {r h}) is represented in UDL by
a domain of character type.

In UDL., data structures are defined by a relation name and a
tuple of data, which correspond to specific attributes specified
in UPN:

R(A; = Vy,---, A = V).

An example of a work center record in MRP I in the form
of a UDL relation is shown below. It represents a work
center 1t101(wcid) that is a lathe(des), located in the
machining ‘(dep) department, having h (hold) status (sis),
na (not available) state (ste), nul1(unknown) capacity (cap),
M12 resource code (res), and nul l(unknown) effectivity stant
date (esd). (It is reminded that general work center record in
MRP II is represented as Mwc (wcid, des, dep, cap,

sts, ste, esd))

Mwc(wcid = 1t101, des = lathe,

res,

dep = machining cap = null, stz = h, ste = na,
res = M12,ead = null)

B. Facts in UPN as UDL Conditions

In order to verify whether a rule is enabled or not, it
15 necessary to verify that the precondition part of the rule
matches with the status informaton in the system. Status
information is represented by UPN places and their marking.
Access to that information is specified in UPN by means of
arcs and arc expressions.

Two different types of status information can be distin-
guished: information about the database status and information
about the reasoning process status.

Database status Requires access 1o a database record and
reading the values of its aiributes. This is implemented by
using the UDL relational form where the record is identified
by the record id number.

For example: In Fig. 3, the database check of workcenter
ir101 with a hold status, corresponds in UPN to an arc from
the place EMwe of the MRP I database, with the function

*wecid = 1101, sts = h. This is translated into UDL in the

same form: Mwc (wcid = 1t101, sts = h)

On the other hand, the nonexistence of the work center [r101
corresponds to the PN place NMwc of the MRP II database,
with the function weid = [£101; this can be translated into the
UDL form of; ~ Mwc(wecid = 1£101)

Reasoning process status Generally corresponds to the
states of an UDL application procedure. For example, places
m o ps in Fig. 3.

C. Database Related Arc Conditions in UPN as UDL
Checkings and Modification Procedures

The next step in the translation process is to identify
UPN elements, which correspond to arc conditions directly
relating to database places, in order 1o translate them into UDL
elements. They are translated into UDL checking conditions
or modification procedures 1o access or modify the database.
These elements are identified as follows:

I) Checking a record. In UPN form, the database check
is represenied by a pair of input and output arcs that
have the same arc expression, linked between a transition
and a database place. The check is implemented, as
mentioned before, for database access. The case of
a database place representing the nonexistence of the
record is implemented using the UDL negative form.
For example, transition ¢5 in Fig. 3 has two arcs to and
from place EMwe (in the MRP II database) with the
same are expression: wcid = wcid#, sts = r.
This is translated into UDL form as:

Mwc (wecid = Weid, sts = r)

2} Inserting a record occurs when there is an arc from a
database place to a transition that represents nonexis-
tence of a record, and another arc from the transition to
a database place representing the existence of the same
record. It is implemented using the UDL modification

s

e T

Lt

L2 [EEE TRAMSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1594

procedure insert ((relation name) ({{tuple
spec})). For example, transition {5 in Fig. 3 has one
arc from place NPwe and one to place EPwe (in the
MRP II database) with the arc expression Pwe (weid

= wceid#, des = des#, dep = dep#, cap
= cap#, sts = w). This is translated into UDL
form as:

insert Pwg(wcid = Wcid, des = Des, dep
= Dep, Eap = Cap. Sts = 4]

3) Deleting a record from the database can be recognized
when an arc stems from a database place representing
the existence of a record to a transition, and another
arc stems from the transition o a database place rep-
resenting the nonexistence of the same record. It is
implemented using the UDL modification procedure:
delete ({relation name){{tuple spec }I)

4) U/pdating a record in the database can be recognized
when an arc stems from a database place representing
the existence of a record to a transition, and another
arc, in the reverse direction, but with a different func-
tion. It is implemented using the UDL modification
procedure update {{relation name}({cld tu-
ple spec);i{new tuple spec))). For example,
transition {5 in Fig. 3 implies an update to the record
Mwe (in place EMwe) in the MRP II database that is
translated into UDL form as:
update (Mwc {wocid = Weid:
cap = Cap, sts = 1))

woid = Weid,

D. Requesting Printing Information in UPN
as UDL Primitive 1/Q Operations

The next step is to identify UPN elements, which correspond
to arc conditions directly relating to information input/output,
to translate them into UDL ifo primitives operations. Thus
requesting information from or printing information to the user
can be achieved. The primitive operations are identified as
follows:

1) Requesting information from the user. This is detected
when a transition is a source transition, where some
information that is leaving the transition through the out-
going arc(s) did not enter through any incoming arc(s).
This new information must be requested from the user. It
is implemented using the UDL primitive operation read
{{domain wariable}). For example, transition ¢y
if Fig. 3 does not receive information from place py.
Instead one needs to provide a work center identification
number in the variable weid4#£. This information must be
provided by the user and is implemented by:

read(Wcid).

For better legibility, a message like the following can
be printed to prompt the user:

write {‘Input the wvalue for the wvari-
able weid’).

2) Printing a message to the user. This is detected when
sink places appear in the net. Some information arrives
at such a place through the incoming arc(s), but does not
leave the place through any outgoing arc(s), generally

because it has no outgoing arcs. This information must
be shown to the user. It is implemented using the UDL
primitive write (*{place label text)’, (domain variable)).
If there is no domain variable, the label identifying the
place is shown as write (‘{place label text)'). The last
option may be used to show single emor messages. For
example, place py in Fig. 3 is translated as an error
message for the work center identification provided in
variable wcid+#:

write (‘Output in P4 for data:'wocid$)
or, if the place has an associated label:
write I work center
exists:'woid #).

already

E. Rules and Metarules as UDL Procedures

The following step corresponds to the translation of the
transition set itself. UDL procedures provide a very powerful
mechanism to represent if-then rules (transitions). As a first
approach., each transition of an UPN net could be easily
implemented by a separate UDL procedure. This approach
for the translation of transitions is general and simple but
it presents several problems. An important problem is that
some additional local variables are required to represent the
completed firing of each transition within the transition set.
Secondly, the approach does not make use of some important
programming capabilities available in UDL, such as the use
of procedures (application rules), and recursion. This would
result in an inefficient implementation.

For cxample, in order to implement transition £3 from Fig. 3
as a composed operation, we need a new vanable, varPZ, o
test if the value Weid is in place P2 =

Release — Transition — £3
Muc(wcid = Weid, sts = Sts)
— (varP2? = Wcid)
A Muc(wcid = Weid, sts =z),
write('Workcenteralreadyhas
“r"statusinMRPII').

On the other hand, UDL provides a way to implement a
set of related rules in the form of a composed rule. Also.
procedures and procedure calls are typical decompesition
mechanisms used in UDL programs and recursion is also
available. Finally, UPN allows for a horizontal aggregation
of related transitions that belong lo a subnet. As an alternative
to the first approach, our strategy is to implement a ser of
related rules as one UDL procedure. UDL procedures are
used to represent subnets at any level of abstraction. It is no
longer necessary to use additional local variables (other than
the formal parameters of the procedures) to implement the
transition status of the net execution.

To take all of these features into account, we follow what
we call an information driven approach. The purpose of the
integrated manufacturing information system is to collect some
information that is used o affect the external world or the
system itself. This means that in cach context (scenario}
transitions can be differentiated by the information they require
and the information they provide. Parameters of the procedure

HARHALAKIS o ol RULE-BASED INFORMATION SYSTEMS FOR INTEGRATED MANUFACTURING w3

reflect the information that may be needed in a context. Using
the UDL negative var or positive nonvar variable instanti-
ation tests, the availability of this information can be checked.

However, only one transition is executed in each operation
call. A situation in which the outgoing arcs of a transition go to
places internal to the subnet, which means that the subnet will
continue firing the other transitions, is implemented by making
a recursive call to the UDL procedure (subnet). Therefore,
successive transition executions are made by recursive calls to
the same procedure. We need to identify when the recursive
call sequence has finished. This happens when none of the
other transitions in the subnet can be enabled by the output
of the firing transition. We can identify this by determining
when the outgoing arcs of a transition do nol connect Lo
internal places (places can enable the other transitions within
the subnet).

Procedure parameters transfer data from one call (transition
execution) to the following one. The actual parameters sent
in each recursive call correspond to the information that is
rransmitted to the post conditions of the transition being
executed.

We need now to discuss the problem of how to deal with
conflicts in the net (for example when two or more transitions
are simultaneously enabled). This problem is solved by making
use of the UDL alternative procedure capability, presented in
Section III-B. Conflicts are resolved by identifying a success-
ful path, through trying different evolution alternatives that
correspond Lo different transition firing sequences. Although
this may appear as an “ad hoc” solution, it is sufficient for
our problem domain,

F. Translation Procedure

The translation of UPN to UDL can be seen as another
special “implementation” of Petri nets, specific for this appli-
cation domain. This implementation of UPN is simpler than
the implementation of a generic colored Petri net, due to the
added constraints imposed by UPN over the general Petri net
formalism. Examples of such added constraints include: the
variety of preconditions that are highly constrained, rules that
are supposed to be well structured in metarules, specifications
that are related o a manufacturing database domain. The
overall purpose of the translation procedure is to generate an
efficient code in UDL, the language in which the specifications
will be executed. To start the translation procedure, the UPN
model must be provided. The procedure for translating one
subnet into a piece of UDL code is detailed as follows:

Generate a UDL procedure heading, based on the UPN
metarule name ({0}) and its corresponding database relation
{{f2}). The set of attribute names to be included in the formal
parameter list of the procedure is defined by the set of all
attribute names that appear in the arc expressions of the subnet
{A1.---, Aw). The procedure head is:

{O} {R}{Al —_ Vl-"'w'qm = l*"rrﬂ.]:

where (V7,---, V) is the set of formal variables for which
the values of attributes, Ay, -- -, A,,, from the relation { i} are
bound (these variable names can be the same as those in the
UPN maodel).

One UDL procedure is composed by several altemnatives,
onc for each transition in the metarule subnet. The following
steps must be taken for each transinion.

1) Conditions for alternatives (preconditions of transitions)
are defined by incoming arc(s) o a transition:

#) Recognize checking UDL elements, as explained in
Section IV-C. The conjunction of these checkings is
a precondition for the procedure alternative;
LB =00 A, =)

b} Find positive variable instantiations by looking at the
variables in the arc, expressions from the incoming
arcs that do not belong to the database checkings
recognized above (Varg,---, Var;), and generate a
positive variable instantiation test for each one. The
conjunction of these tests is another precondition:
nonvar{V;) A --- A nonvar(V;)

c} The rest of the formal variables have negative instan-
tiations. Only variables representing attributes that
provide information to the output places and arc not
coming from the input places (V;,---, ¥,) must be
checked. A negative variable instantiation Lest must
be generated for cach of them. The conjunction of

- these tests is another precondition:

var(Ve) A---A wvar(Vy,)

23 Operations for alternatives (posiconditions of transi-
tions) are defined by outgoing arcs from a transition.
Each one of the following steps can produce new op-
erations:

a) Recognize inpur and outpur UDL elements, as ex-
plained in Section IV-D. For each variable, that
needs to be provided from the user, generate the ap-
propriate input sequence ({Text V) that corresponds
to the interpretation of the attribute name bound by
Vy in the database record tables):
write {'Enter {Textl,)'), read (V).

For each output vaniable generate:
write (‘{place label text}’}

b} Recognize deletion, insertion and wpdate UDL
modification procedures, as explained in Section
IV-C and generate the appropriate invocations:
delete({relationname)({tuplespec)})
insert ({relationname)({{tuplespec}})
update {{relationname)({oldtuplespec);
[{newtuplespec)]])

¢} Generate UDL application procedures, which imply
the call for other existing application procedures
in the system with specifically initiated variables,
associated with this transition. The recognition of
UDL application procedure calls is based on the
description attached to this transition in the UPN
maodel.

d) Generate a recursive call, if any of the transition’s
output places, which is not a database place, is an
input place to any other transition within the subnet.
Only the variables (V;, - - -, ¥j) which are used in the
outgoing arc expressions, that connect to the output
places mentioned above, are used in the parameter

L] IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, NO. 6, DECEMBER 1994

list of the procedure call:
(RN A: = Vi,---,4; = ¥5)

(. Generation of UDL Code

The implementation of the knowledge based system is based
on the translation from the UPN subnets (which are designed,
validated, and refined according to the system specifications
collected) into UDL code. There are two types of UPN
subnets to be translated: the first, a single-procedure subnet
that involves only one application procedure; the second, a
multi-procedure subnet that involves more than one appli-
cation procedure with procedural calls among subnets. Each
application procedure has to be translated into one UDL code,
following the translation procedure discussed in Section IV-
F, including the application procedure calls in the second
case. Examples of translations for both single-procedure UPN
subnets and multiprocedure UPN subnets are detailed in the
following sections.

1) Example of Translating a Single-Procedure UPN Subnet
into one UDL Procedure: In order to clarify the translation
procedure, we return to the example shown in Fig. 3, which
was used to illusirate the creation of UPN models described in
Section II-B-1. This net is simple because it does not require
further refinement to create additional subnets. The goal now
is 1o translate the UPN representation to the respective UDL
code.

The name of the UPN is “release Mwc" and the correspond-
ing database records—work center record in MRP 1T and work
center record in CAPP—are described below (a more detailed
description of Mwe is given in Table I):

Work center record in MRP II: Mwc (wecid, des, dep,

cap, sts, ste, res, esd).
Work center record in CAPP: Pwe (weid, des, dep,
cap, sts)

a) Translation Procedure:

1} Procedure heading generation:
{0} +— release(metarule name)
{R} + Mwc(corresponding database record)
Attribute names that appear in the arc expressions are:
wcid, des, dep, cap, sis and their corresponding variables
(wcid#f, des#, dep#, cap##) are modified into the

following UDL variable syntax: Weid, Des, Dep,
Cap.

The procedure heading becomes —

release Mwc (wcid = Weid, des = Des,
dep = Dep, cap = Cap)

2) Conditions for the alternatives:

t; There is no connection with database places (rows
NMwe and EMwe in 74— and I* are 0). This
means there is no checking of the database. The
column of transition ¢, in [~ shows that there
is only one incoming arc connected with place
p1 with no variables attached to the arc ex-
pression. This means that no positive variable
instantiations are needed. The rest of the vari-
ables (Weid,Des,Dep and Sts) have negative
instantiations; however, the column of transition

ia

iy

e

4

=

5

t; in /T shows that there is only one outgoing
arc connected with place p; with arc expression
weid#. This means that in the incoming arcs to
the transition a work center identification number
{(variable Wcid) was not provided, but will be
provided to the outgoing arc. In order to reduce the
code, only this test is really needed: var{Weid).
The complete condition part is =

var{Wcid)

It has incoming and outgoing arcs o NMwe
(MRP II database) with the same arc expression
Mwe(weid = weid#). This is a checking
for the non existence of Mwc with that spe-
cific work center identification number —~
Mwc(wcid = Weid). It has another incoming arc
with wcid# from py providing the work center
id. information this must be checked for positive
instantiation — neonvar(Weid). There is no
more outgoing information for the arc because
the arc expression to place p; has no variables.
This means that no negative instantiation test
is necessary. The complete condition part is
the conjunction of these two conditions —
nonvar{Wcid)A ~ Mwc(wcid = Wcid)

Similarly, the complete condition is =

‘nenvar(Wcid)AMwe(weid = Weid,sts = 1)

Similarly, the complete condition is —

nonvar(Weid) A var(Cap)AMwe(weid = Weid,
des = Des,dep = Dep,sts = h)

Similarly, the complete condition is =

nonvar(Wcid) A nonvar({Des)Anonvar(Dep)h

nonvar(Cap)AMwc(wcid = Weid, sts = h)

3) Operations for the alternatives:

ta

Column ¢; from I~ and JT shows that variable
wcid# needs to be requested (there are no incom-
ing variables and variable weid# is outgoing) =
write('Enter wcid’), read(Wcid),

No other UDL elements (output, deletion, creation
or update) can be recognized. However, transition
t; has an output place, pp, which is an input
place to transitions, £, {3 and t4. This means that
the reasoning process is not completed vet and a
recursive call is required. The parameters of this
call are the ones required by the outgoing arcs (in
this case only

Wcid) —

release Mwc(wcid=Wcid)

An output primitive can be easily recognized here:
place ps is an output place (or a sink place), thus
the information in the arc expression, wcid#, and
the text associated with the interpretation of ps
must be displayed —-

write('Work center ID does not ex-
ist in MRP II, enter again‘’, Wcid),

HARHALAKIS er al.: RULE-BASED INFORMATION S5YSTEMS FOR INTEGRATED MANUFACTURIMNG 05

MRP 11
dB3
NHE“ | Mwe{ weid=weid#]
EMwe
O Mwowoid=wcidit)

Fig. 7. Subnet of the scenario “Deletion of a work center in MEP I1.”

As before, a recursive call is required, in this case
with no call parameters (arc expression outgoing
to place p; has no vanables) =

release Mwec()

t3 Only an output statement is needed to display
the information in the arc expression, weid#,
and the text associated to the interpretation of
Ps =
write('Work center already has
*“*r'’ status in MRFII‘, Wcid),
No new call is needed because the output place
P4 15 not connected to any other transition.

ty The input for variable Cap is required and then a
recursive call is made with the information for the
wcid, des, dep, cap and sts parameters

=
write (‘Enter capacity’).
read(Cap},

release Mwe (weid = Weid, des =
Des, dep = Dep, cap = Cap).

ts An update modification procedure can be iden-
tified because there is an arc coming from the
database place EMwe with a different function
(Mwe{weid= weid#)) to the one that is going
back to EMwe(Mwe(weid = weid#, des =
des#, dep = dep#, cap = cap#, sls =r1))==
update Mwe(wcid = Wcid, sts =
h:wcid = Wecid, cap = Cap, sts =
L),
It also has an associated procedure call =
insert Pwc{wcid = Wgid, des = Des,

dep = Dep, cap = Cap, sts = W).

The final UDL code resulting from this translation is shown
in Fig. 5.

CAFP 3FC
dBS dBS
NSwe
Pwelweid=weid#) NOP“ O@ f=
EPwe E8we
-0 O

& EIJI Example aof Translating a Multiprocedure UPN Subnet
into UDL Procedures: An UPN subnet that has been designed
using a top-down refinement technique into a set of subnets,
each representing one UDL application procedure, has to be
translated into more than one piece of UDL code segments.
An example of this kind is the removal of a work center record
from MRP II presented here. MRP II is the execution function
in most companies and is the sole center for the procurement
and allocation of resources, and in turn, is the function through
which equipment ‘is phased out or removed from the system.
When the removal operation is invoked in MRP II, the
following system checks are initiated. A check is made to
see that the work center being removed exists in MRPIL The
status of the work center is not relevant to the operation. In
addition, all routings maintained by the MRP Il routing module
are checked. If any routing utilizing this work center exist and
are on “hold™ or “release” status in CAPP, the operation fails
and a message to this effect is displayed. The reason is that
work centers that are utilized by active routings, cannol be
removed. If the above checks are satisfied, the work center is
removed from the databases of MRP 1I, CAPP and SFC. The
above specification is first modeled in UPN at the abstract level
as shown in Fig. 7 and then further refined down to a more
detailed level, as shown in Fig. 8. The complete net involves
three subnets that are translated to three UDL procedures: one
major procedure {procedure no. 1) removes the work center via
MRP 1I and two other procedures check the MRP Il and the
CAPP databases (see the dashed boxes in Fig. &. The top-down
refinement technique used was discussed in Section [I-B2,
The goal now is to translaie the UPN representations to
the respective UDL codes. Following the same translation
procedure for all the subnets involved, three UDL application
procedures are generated as shown below (the UDL code is
shown in Fig. 9).
a) UPN subnet no. 1; During the translation of opera-
tions ¢2, the following two application procedures called by it

v e bl i

e

Q06 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 6, MO, 6, DECEMBER 19404

Fig. 8. Subnet of the scenario “Deletion of a work center in MRF I1."

have to be satisfied, before any other modification procedures
can be implemented =+

check.l Mwec (wcid = Wcid), check.2 Prout
(wcid = Wcid, psts Psts),.

Three deletion modification procedures can be identified: an
arc coming from the database place EMwc with the expression
Mwe(weid = weid#) and another one going to the database
place NMwc with the same expression (same is the case for
CAPP and SFC) =
delete Mwc(wcid = Wcid), delete Pwc(wcid =
Weid), delete Swe(wcid = Weid).

b) UPN subnet no. 2: During the translation of operation
i3 4, we observe that the output is a place pp 3 that represents
the interface with the higher level subnet. This place will
receive a token as long as all the preconditions are satisfied,
Therefore, no operation is required here.

c) UPN subnet no. 3: During the translation of operation
ta 7, there are two negative checkings, which are represented
by the inhibitor arcs, for the nonexistence of any routing
EFrout (wcid = Wecid, psts = h) using that specific
workcenter identification number and bearing an h or r status
—=
~ EPrput (wcid = Weid, psts = h) and ~ EProut
(wcid = Wcid, psts = r).

Similarly, the complete condition is the conjunction of all
related conditions —
nonvar (Weid) A ~ EProut (wcid = Wecid, psts
= h) A~ EProut (wcid = Wcid, psts = rJ},

V. CONCLUSION

The INformation Systems for Integrated Manufacturing
(INSIM) design and maintenance methodology has been de-

HARHALAKIS er al: RULE-BASED INFORMATION SYSTEMS FOR INTEGRATED MANUFACTURING oy

remove Mwc(wcid=Wcid)

— var(Wcid),
write('Enter wcid'),
read (Wcid),
remove Mwc(wcid=Wcid),

— monvar(Wcid),
check] rav.mvc Mec (vcid=Wcid),
check?.rmv.mwc Prout (wcid=Wcid pata=Pats),
delete Mwc(wcid=Wcid),
dalete Pvc{wcid=Wcid},
delete delete Sec(wcid=Wcid).

checkl Mwe(wcid=Wcid)
— ponvar(Wcid) A ~Mec(wcid=Wcid),
write('Work center ID does mot exist in MRF II*, Wcid).

— nonvar(Weid) A Mec(wcid=Wcid).

check? Prout{wcid=¥cid)
—+ ponvar (Wcid) A nonvar(Wcid) A EPwc (wcid=Wcid,psta=h),
write(’Work center is in use by active process plana’, Weid).

— nenvar(Wcid)} A nenvar(Wcid) A EPwc (wcid=Weid pats=r),
write('Werk center ie in use by active process plans', Wcid).

— nonvar(Weid) A ~ EProut (wcid=Wcid,pats=h) A ~ EProut (wcid=Wcid,psts=r).

Fig. 9. UDL code for the scenario “Deletion of a work center in MRP 1lg

veloped and implemented for generating knowledge based
systems to effectively manage and control the information
flow among CADYCAPP/MRP II/SFC application systems. Its
implementation strategy aims at facilitating the translation
between UPN and UDL {as a rule specification language)
and provides us with a powerful tool to reduce the life
cycle of developing knowledge bases. In addition, the same
methodology can be applied in modifying existing knowledge
bases, which evolve dynamically as a result of changes in
existing company policies. On the other hand, if a different
rule specification language were used instead of UDL, this
design methodology could be applied in the same way with a
modified Petri nets translator. A prototype of the knowledge
based system for integrating the CAD/CAPP/MRP II/SFC
application systems has been developed, based on the proposed
methodology, This prototype has demonstrated the feasibility
of our design methodology and has won considerable attention
from both industry and other related research projects. In
addition, an industrial application has been materialized in the
project for automating the chemical process change control
procedure at Merck Co., Inc, NI, In that project, instead of
UPN and UDL, GPN were used to model and analyze the
chemical process change control procedures and ProC was
used to implement the rule base upon an Oracle DEMS. Future
work includes the incorporation of actual CAD, CAPP, MRP
I1, and SFC software packages and a database management
system (ORACLE) as the next step for implementation.

REFERENCES

{1] M. Sepehri, "Integrated data base for computer integrated manwfaciur-
ing.” [EEE Circuiss and Devices Mag., pp. 48-54, March 1987,

[2] 5. C. Y. Lu, "Knowledge-based expent sysiem: A new horizon of
manufacturing automation,” Proc. Knowledge-Bused Expert Systems for
Manufaciuring in the Winter Ann. Meeting ASME, Anaheim, CA, 1986,
pp. 11-23

[3] G. Harhalakis, C. P. Lin, H. Hillion, and K. Moy, “Development of
a factory level CIM maodel,” . Manufacturing Sysr., vol. 9, no. 2, pp.
L16-128, 1990. °

[4] €. P.Lin, “Design, verification and implementation of rule based infor-
mation system for integrated manufacturing,” Ph.D. thesis, Department
of Mechanical Engineering, University of Maryland, College Pari,
Maryland, 1991,

[5] D. M. Dilis and W. Wu, “Using knowledge-based technology 1o integrate

CIM databases,” IEEE Trans, Knowledge Data Engineering, vol. 3, no.

2, pp. 237245, 1991.

C. Hsu, C. Angulo, A. Perry, and L, Ratiner, A design method for man-

ufacturing information management,” Proc. Conf. Dara and Knowledge

Systems for Manufacturing and Engineering, Hartford, Connecticut, pp.

93-102, 1987,

C. Hsu, M. Bouziane, L. Rattner, and L. Yee, “Information resources

management in heterogenecus, distributed environments: A meta-

database approach,” [EEE Trans. Software Eng., vol. 17, no. 6, pp.

604625, 1991.

[8] C. Hsu, et al., “Metadatabase modeling for enterprise information
integration,” J. Sysr. fntegration, vol. 1. pp. 5-37, 1992
9] F. Biemans and P. Blonk, “On the formal specification and verification
of CIM architectures using LOTOS,” Computers in Indiustry, vol. 7, pp.
491504, 1986,
[10] 5. Y. W. S0, “Modeling integrated manufacturing data with SAM."
Computer, vol. 19, no, 1, pp. 3449, 1986,

[11] M. Hardwick and D. Spooner, “The ROSE data manager: Using object

technology to support interactive engineering applications,” JEEE Trans.

Knowi, Dara Eng., pp. 285-288, 1989,

[12] D Spooner, M. Hardwick, ef al., “The evolution of ROSE: An engineer-

ing ohject-oriented database system.” Proc. Conf. on CIM, BPL 1990,
pp. 16-23,

[13] F. R. Muro, J. L. Villarroel, J. Martinez, and M. Silva, “A knowl-

edge representation tool for manufaciuring control systems design and

prototyping,” INCOM' 89, 6th [FACHFICHIFORSIMACS Symp. Infarma-
tion Controd Problams in Manufacturing Technology., Madrid, Spain,

September 1989,

L. Mark, N. Roussopoulos, and R. Cochrane, “Update dependencies in

the relational model,” Syst. Res. Cent. Tech. Rep. No. SRC TR-91-94,

University of Maryland, 1991

[15] A. D. Leva, F. Vernadat, and D. Bizier, “Information system analysis
and conceptual database design in production environments with 1*."
Computers in Indusiry 9, pp. 183-217, 1987.

[16] A.D.Leva, F. Vemadat, and D, Bizier, “Enterprise analysis and databass
design with M*: A case study,” Computers in fndustry [1, pp. 31-31,

1938,

[

7

114]

Qo8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL,

[17] J. M. Colom, M. Silva, and J. L. Villarroel, “On software implementation
of Penti nets and colored Petri nets using high-level concurrent lan-
guages,” Proc. Seventh European Warkshop on Application and Theory
of Peiri Nets, Oxford, England, 1986,

D. 5. Batory and W, Kim, “"Modeling concepts for VLSI CAD ohjects,”
ACM Trans, Diatabase Sysi. vol. 10, no. 3, 1985,

5 Cammarata and M. Melkanoff, “An interactive data dictionary
facility for CADYCAM data bases,” Expert Database Systems: Proc.
First fnr. Workshop, Menlo Park, CA: Benjamin/Cummings Publishing
Company, Inc., 1986,

1. L. Peterson, Perri Net Theory and the Modeling of Svstems.
wood Cliffs, NJ: Prentice Hall, 1981.

T. Murata, “Petri nets: Properies, analysis and applications,” Proc.
IEEE, vol. 77, no. 4, pp. 541-580, 1989.

K. Jensen, “Colored Petri nets,” in Perri Ners: Centrad Models and
Their Properties. Advances in Perei Nets 1986, Part 1, Proceedings af
an Advanced Course, Bad Honnef, 8-19. September 1986, G, Goos
and J. Hanmanis, Eds. Berlin, Heidelberg: Springer-Verlag 1987, pp
248-299.

E. Valene, “Analysis of Petn nets by stepwise refinements,” J. Compurer
and System Sciences, vol. 18, pp. 3546, 1979,

[. Suzuki and T. Murata, A method for stepwise refinement and
abstraction of Petri nets,” f. Computer Svstem Science, vol, 27, pp.
51-T6, 1983.

Y. Marahari and N. Viswanadham, “A Petri net approach 1o the modeling
and analysis of flexible manufacturing systems,” Anwn. Operations Res.,

vol. 3, pp. 381-391, I985.

M. D Jeng and F. DiCesare, “A review of synthesis technigues for Petri
nets,” Proc. [EEE Compurer fntegrated Manufacturing Svatems Conf,
EPL, May 1990,

T. A. Nguyen, W. A. Perkins, T. I. Laffey, and D. Pecora, “Knowledge
base validation,” Al Magazire, summer, pp. 67-75, 1987,

B. Lopez, P. Meseguer, and E. Plaza, “Knowledge based systems
validation: A state of the ant,” Af Cammunications, vol. 3, no. 2, pp.
58=T72, 1990,

[29] J. Martinez and M. Silva, “A simple and fast algorithm to obtain all
invariants of a generalised Petri net,” Second Ewropean Workshop on
Application and Theory of Pewrd Nets, 1982, pp. 301-310..

K. H. Lee and J. Favrel, “Hierarchical reduction method for analysis
and decomposition of Petri nets,” JEEE Trans. Syst, Man Cyber,, vol,
13, no. 2, 1985.

R. J. Cochrane, “Issues in integrating active rules into database systems,”
Ph.DD. thesis, Systems Research Center, University of Maryland, College
Park. Maryland 20742, 1992

J. Ullman, Principles of Darabase and Knowledge-Base Sysrems, vol. |
Rockville, MD: Computer Science Press, 1988,

[1%]

[19]

[20] Engle-

21}

22|

[23]
[24]

[25]

[26]

[27]
[28]

[30]

[31]

132]

George Harhalakis (M"90) qualified as a mechan-
ical engineer at Mational Technical University of
Athens, Greece, in 1971, He received the M.Sc.
degree in manufacturing technology in 1981 and
the Ph.D. degree in 1984, specializing in production
control, at the University of Manchester Institute of
Science and Technology (UMIST) in Great Britain.
He worked in the manufacturing industry in Greece
and in Great Britain for twelve years, He also
worked as a consultant with a number of companies,
including Ingersoll Rand, Staveley Vessels, Curtis
Engine, Ohmeda, Bata Shoe, and others in Great Britain and the USA.

He was an Assoociate Professor of Mechanical Engineering and the
Associate Director for Education of the Institute for Systems Research of
the University of Maryland. His research interests revolved around computer
integrated manufacturing systems, and plant design and operation. He authored
over 70 publications and contributed to several books as an author or editor,

Dr. Harhalakis was awarded the teaching excellence award of the College
of Engineering. He was a member of the ASME and the APICS, and a senior
member of the SEM and the [EE.

b, MO, 6, DECEMBER 1994

Chang-Pin Lin (5"90-M"91) received the B.S. de-
gree from Wational Taiwan University, Taipei, Tai-
wan in 1982, the M.5. degree from Nonh Carolina
State University, Raleigh, in 1986, and the Ph.D.
degree from the University of Marvland, College
Park, in 1991, all in mechanical enginecring. He
worked as a rescarch engineer at the Institute of
Systems Research at the University of Maryland,
College Park. from 1989 10 1992, He is currently
working at the Atomic Energy Council in Taiwan.
His research interests include production control and
management, compuler-integraled manufacturnng, system modeling, and Petn
net theory. He i1s a member of the ASME.

Leo Mark received the M.S. and Ph.D. degrees
in computer science from Aarhus University, Den-
mark, in 1980 and |985, respectively. He was a
graduate student in the Department of Computer
Science, University of Maryland, from 1983 w
1985, He joined the faculty as an assistanl professor
in 1986 and had joint appointments with the Institute
of Advanced Computer Studies (1986—1989) and
with the Systems Research Center (1989-1992),
Since 1992 he has been an Associate Professor an the
College of Computing at Georgia Tech. His research

interests include database systems architecture, data models, database models,
database design, metadata management data dictionary systems, information
interchange, rulebases, transaction dependencies, efficient query processing,
differential computation models, transaction time databases, database gen-
erator systems, software engineering databases, and engineening information
systems. He has published over 30 scientific papers in books, referced journals,
and conferences.

Pedro Muro-Medrano received the M.S. and Ph.D
degrees in electrical engineering from the University
of Zaragoza, Zaragoza, Spain, in 1985 and 1990,
respectively, He was a graduate research assistant
al the Department of Electrical Engineering and
Computer Science at the University of Zaragoza
from 1985 to 199). He joined the Faculty of the
University of Zaragoza as an assistanl professor
in 1989, and since 1992 he has been an associate
professor. He has been a visiting scholar at the
Robatics Institute, Carmnegie Mellon University and
a visiling research associate at the Systems Research Center of the University
of Maryland. His research interesis include artificial intelligence applica-
tions for CIM, knowledge-based decision making. knowledge representation,
Petri net applications, object-onented soflware engineering, and engineenng
information systems.

@ IEEE TRANSACTIONS ON

KNOWLEDGE AND
DATA ENGINEERING

A PUBLICATION OF THE IEEE COMPUTER SOCIETY @

DECEMBER 1994 VOLUME & MUMBER & ITKEEH (ISSN 1041-4347)

T LTy] e e S e e e e e B e e T e S e e ey B Wah B53

FAPERS
Muachine Learning

Leaming Concepts in Parallel Based Upon the Strategy of Vermn BPREE i et e T.P. Hong and 5. 5. Tseng 857
Uncertainty Reasoning

A Fuzzy Reasoning Database Question Answering System 5 Vas u.l’mdn G. Triantafvllos, and W. Kobrosfy 868
Expert Systems

Performance Evaluation of Rule Grouping on a Real-Time Expert System Architecture I-R. Chen and B. Poole 883
Rule-Based Systems

Implementation of Rule-Based Information Systems for Integrated Manufacturing.
... G. Harhalakis, C. P. Lin, L. Mark, and P. R. Muro-Medrano 892
Distributed Knowledge Processing

ConClass: A Framework for Real-Time Distributed Knowledpe-Based Processing.......................... H. Maegawa 909
Database Integration

A Methodology for Integration of Heterogeneous Databases................ M. P. Reddy, B. E. Prasad, and P. G. Reddy 920
Cuery Processing

Soct v Hash Fengiied . ooson e coor. G. Graefe, A. Linville, and L. D. Shapira 934
Temporal Databases

DBEMS Support for Nonmetric Measarement SYSEMSoo.oouoi it ieieianteane s iaeaineaes N.A. Lorenizos 945

Temporal Specialization and GeneraliZation..........ccooviiiiiiiin oo iiiiiiiiaiiiinna, C. 5. Jensen and R. Snodgrass 934
Replicated Databases

Optimal Allocation for Partially Replicated Database Systems on Ring NMetworks o iiiiiiiiiiiiiinnnaas
.. A B ’i'rrphf'm Y. Yesha, and K. Humenik 975

CONCISE PAPERS

PREPARE: A Tool for Knowledge Base Verification .__................ 5 . D). Zhang and D. Nguyen 983

New Algorithms for Parallelizing Relational Database Joins in the Pr&nencc ::r Ilam "T.Lew
... 2L Wolf, D.M. Dias, P.5. Yu, and J. Turek 990

An Improved Algorithm for Implication Testing Involving Arithmetic Inequalities W. Sun and M. A. Weiss 997

CALLS FOR PAPERS

Research Surveys and Correspondences on Recent Developments iiiiiiiiiiiiniainrrnreasraeaans 1002

Special Tssue on Seciire Datahase SYSIEMISouee o neae s caneeiarea e ce s ant e an s nse s semma s ssians Y LI 1003

[t B o e R e e SR e el D e e e T L B e e follows page 1003

