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This paper focuses on the coordination of manufacturing systems. A software architecture for manufacturing systems
control is presented. The architecture follows a hierarchical approach for control, ranging from real-time coordination
to long-term scheduling, where the different layers share a common knowledge base. A knowledge representation
schema for manufacturing systems is proposed. This schema integrates knowledge representation technigues based on
frames and high-level Petri nets to describe plant behaviour, and it follows an object-based methodology. The
coordination function is materialized by making the coordination model evolve; this is done by a centralized, concurrent

and interpreted implementation of the underlying Petri net.

1. INTRODUCTION

A manufacturing system pursues the objective of
manufacturing products to the satisfaction of the client
{which is basically measured by the product’s quality
and delivery date) while making a profit for the
manufacturer. To achieve these objectives, the manu-
facturing system must possess a considerable degree of
automation and flexibility. This requires an integrated
computer control system where issues such as hier-
archy, complexity, concurrency, optimization, capa-
city, uncertainty and feedback become very important.
Many researchers have agreed on the hierarchical
decomposition of manufacturing systems control.
Four levels have been considered in the hierarchical
decomposition adopted in our work: preduction plan-
ning, operation scheduling, coordination of plant ele-
ments and local control,

In this paper, our attention is focused on the
coordination level. To carry out the different co-
ordination functions, a precise model of the manufac-
turing system behaviour is needed, The number of
manufacturing system elements, and the high degree of
concurrency between them, make the coordination
model very complex. In our approach, factory behav-
iour specifications are modelled by Petri nets, whereas
the interpretation of the Petri net model provides the
guidance needed to carry out the coordination task,
The use of Petri nets to model discrete event systems,
and manufacturing systems in particular, has well-
known advantages that are extensively explained in the
related techmical literature (see Ref. 9 or 19, for
example). Petri nets are a formalism that can be used to
enforce the precision (absence of ambiguities) of
models, and to allow gualitative and quantitative
analysis and simulation. Moreover, Petri nets consti-
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tute an executable formalism that allows one to use the
same model for analysis and for real control of the
system. This fact avoids errors in the control system
implementation and facilitates flexibility, The use of
Petri nets and high-level Petri nets (HLPNs) for the
coordination functions has received a lot of attention
in the technical literature in recent years. We review
two relevant approaches that are related to the work
presented here,

References 4. 17 and 20 propose the use of tools from
the Petri net family for the modelling, analysis and
implementation of the coordination and monitoring
functions. The Petri net expression power is expanded
in Ref. 21 to represent state- and time-related know-
ledge that is not known with certainty (using fuzzy-
timed Petri nets). Abnormal events and normal
operations can also be represented with the same
representation schema,

CASPAIM®*  represents another important
approach, where Petri nets are used for the design of
control systems in manufacturing applications. The
model used in CASPAIM is based on adaptive and
structured Petri nets. The coordination function is
distributed among a set of plant controllers, which can
communicate directly or through a supervisor. Co-
ordination decision problems are solved by a higher
control level that is itself implemented using rule-based
techniques. A special interface is used by the Petri net
model to communicate with this decision system.

Previous work to this paper is presented in Refs 1, 11
and 22, where coloured Petri nets are proposed for the
design, analysis and specification of the coordination
function. On the other hand, in Refs 12, 13 and 15
artificial intelligence techniques are used for the
decision-making process in higher control levels.
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Finally, the basis of this work has been presented in
Ref. 23,

This paper is organized as follows. Section 2 pro-
vides an overview of the general system architecture,
which addresses all control levels identified above.
HLPNs are proposed in Sections 3 and 4 as a
mechanism for the design and implementation of the
coordination model, while the internal structure of the
coordinator subsystem is illustrated in Section 5. The
coordinator has specialized modules to deal with the
control of the manufacturing system in its normal
evolution as well as in exceptional situations. The
coordination of a simple manufacturing cell is devel-
oped as an illustrative example in Sections 3 and 6.

2. CONTROL SYSTEM ARCHITECTURE
The functionality of the global control system (plan-
ning, scheduling and coordination) can be imple-
mented in two different ways: (1) a single software
module integrating the overall functionality, or (2) a
set of communicating software modules. The first
approach produces a more compact software. How-
ever, the second approach has been selected here for
flexibility and modularity, With this option each
function can be designed and implemented separately
with specific techniques and can therefore the more
efficient.

Figure 1 outlines the main components of the global
control system architecture adopted in our approach.
The architecture is structured in four subsystems
sharing a common knowledge base. The basic func-
tions of the coordination system are the coordination
and monitoring of plant elements. In this framework,
the coordinator responsibility is to manage and
supervise the execution of local controllers’ tasks. The
coordinator evaluates which operations can start at
any given time and which of them can do it simultan-
eously. Plant monitoring (data collection and excep-
tion handling) is carried out by an internal monitoring
maodule.

The dispatching subsystem is responsible for provid-
ing solutions to the decision problems in real time. The
coordinator sends messages posing decision problems
and the dispatcher responds with a specific solution.
The dispatcher makes final real-time decisions and
solves discrepancies between the system status and the
schedule by means of a flexible interpretation of the
schedule (a similar approach is considered in Ref. 20).

The scheduling subsystem is responsible for generat-
ing the schedule of operations for each period of
production time using the available information about
orders, inventory, plant characteristics and resources,
production objectives, etc. We also assume an ability
to revise incrementally the current schedule in situa-
tions where significant discrepancies between the
schedule and the current factory state are detected.

The main function of the business planning subsystem
is the production planning. From the client’s orders,
the state of warehouses and the manufacturing ca-
pacity of the plant, a list of production orders is
generated for each period.

Finally, the global knowledge base is a common store
of the system declarative knowledge (factory charac-
teristics and status, production plans, schedules,
constraints, heuristics). This information is shared by
the four subsystems of the control architecture but
each subsystem has its particular vision.

3. KNOWLEDGE REPRESENTATION
SCHEMA
An important step in the development of the control
systemn presented here was the definition of a knowl-
edge representation schema for CIM to be used for a
variety of applications. ranging from plant co-
ordination to production planning. Production goals,
current production schedule, system status and system
model are the main informations to be stored in the
common knowledge base, The representation of
manufacturing entities such as production orders,
manufacturing operations, products, materials, manu-
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Fig. 1. Control system global architecture.
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facturing resources, transports, stores, . .. and their
relationships must be adequately supported. There are
many nontrivial concepts and a complicated relation-
ship structure. To deal with this representation prob-
lem a knowledge representation schema, called KRON
iknowledge representation oriented nets) has been
adopted.’*?? KRON is based on the following main
paradigms:

* Frames: Frame-related concepts were used as a basis
to support the representation of knowledge due to
their expression power to represent concepts and
theirs relationships.

e Ohject-based methodology: This approach offers
advantages such as:® (a) supports conceptual
models near to human thinking and is implemen-
tation-independent (thus the models are easy to
understand), and (b) facilitates reusability and
model extensibility based on encapsulation and
inheritance characteristics.

o HILPNs: A manufacturing syvstem model to be used
in a control application must represent the knowl-
edge about the dynamic behaviour and system
status. Manufacturing systems are nontrivial dis-
crete event systems with a complicated structure of
concurrency. It is also well known that HLPNs are
well-suited tools for the modelling of complex
discrete dynamic systems. Additionally, HLPNs
allow the formal analysis, graphic representations,
simulation and efficient execution of models,

In KRON, a model is composed of objects, which
can contain data, procedures, relations and meta-
knowledge. In addition to these features generally
supported by object-oriented languages, a set of
semantic primitives implementing the HLPN formal-
ism is included. The HLPNs provide the mechanism to
describe the internal behaviour of dynamic objects and
the interactions between them. This paper will not
present the HLPN formalism (the reader is referred to
Ref. 10).

There are some knowledge representation schemata
similar to our approach. The object Petri nets'® are the
most referenced schema in the related technical
literature: a system model is composed of a set of
related objects (which define the HLPN marking) and
an HLPN specifying the system global evolution. In
this approach, the HLPNs are not fully integrated in
the object-oriented environment. Another interesting
approach is the one proposed in Ref. 2, where the
internal behaviour of objects and their interaction are
specified by HLPNs. However, this approach does not
have the power of frame-based schemata to represent
relations  (different from dynamic interactions)
between objects. Finally, Ref 14 proposes another
interesting frame and HLPN-based representation
schema, but the object-oriented advantages are miss-
ing.

We will illusirate the proposed representation
schema by creating the model to represent a typical
manufacturing machine, which will be called a trans-

formation-machine. A transformation-machine model
can be represented as an object (frame) containing
information about its attributes, constitutive parts and
structure. Characteristics such as abstraction hier-
archy relations, predicted information and data collec-
tion, physical characteristics, interface features and
graphic representation characteristics are also repre-
sented within the object definition.

In addition to the previous features, the dynamic
behaviour must be represented. Figure 2 shows the
HLPN graphical specifications for the dynamic
characteristics of an isolated transformation-machine
prototype. The behaviour of this physical entity is
defined such that it can load parts to be processed and
it has a limited available capacity.

Three places (available-capacity, loaded and unload-
ready) and three transitions (load-M, process—M and
unload-M ) are shown in Fig. 2. Places are identified in
the transformation-machine textual representation
{Fig. 3) by state slots and transitions by action slots,
The values of state slots identify the marking whereas
the values of action slots are pointers to transition
objects (ohjects load-M, process—M and unload-M in
Fig. 3). Transitions in the model are associated with
system actions used to chanpe the state, which is itsell
represented by the net marking. Tokens or colours can
be identified in this case with products evolving in the
production plant. The presence of a token in a place is
indicated by the presence of the frame name as a state
slot value.

As an example, let us create now the model of a
manufacturing work cell. To simplify, we consider a
workeell C1, with three machines M1, M2 and M3, a
random access store ST and a robot R for palleting.
First, machines, stores and the transport system of the
cell are separately defined. Machines M1, M2 and M3
can be defined as instances of the transformation-
machine prototype. Following a similar method, ST
and R must be defined as instances of isolated
prototypes modelling a random access store and a
robot. The structural description of the workcell is
completed by establishing interfaces between
machines, the store and the transport system, defining
the flow of parts between them. This is done by

AFtake

loced-M
{resource <op=) = &

I transformation-maching

loaded
available-capacity AFprod

un!md-r@ady:
l

Fig. 2. Underlying Petri net modelling the transformation-machine
prototype behaviour.
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synchronising the appropriate actions (e.g. load and
unload actions of machines are synchronized with the
pick-and-place action of a robot; the results are the
load-M, transitions). Figure 4 shows the HLPN
modelling the dynamic behaviour of the complete
workeell C1.

4. MODELLING PROCESS AND ITS
DEVELOPMENT ENVIRONMENT
The design of the control software must be facilitated
by a computer-aided development environment. From
the knowledge representation point of view, our
environment** has two layers. The first layer is an
analysis and design tool for discrete event systems of
general purpose. This layer consists in the lower-level

{transformation-machine
is-a : transformation-resource machine
states : |oaded unload-ready available-capacity
; stale slols
loaded :
unload-ready :
available-capacity :
actions : load process unload
load : load-M
process : process-M
unload : unload-M
+ predicted informalion and data collection
pending-operations :
statisties :
max-part-size :
constraints :
sot-up :
averago-processing-time :
precision-lovel : ; abstraclion hierarchy relations
has-rosourcos :
resource-of :
type-of-synchro :
input-synchro :
output-synchro :
icon @ ; graphic representalion characterwsiics
wickname :
comment : |}

.+ action slots

; physical characterstics

o interface features

representation schema, the inference mechanism?® and
its conflict resolution module. The second layer is a
specialization for the manufacturing domain; it con-
tains useful object hierarchies for processes, oper-
ations, parts, machines, transports, manufacturing
relations and aggregations, etc,

Model analysis and validation can be performed by
mathematical analysis of the underlying Petri net or by
simulation. A module is available to extract the
generalized Petri net from the model in a format
understandable by a generalized Petri net analysis
package. This package produces information about:
invariants, deadlocks, traps, linear description im-
provement, structural deadlock-freeness analysis,
structural bounds, etc. We have to say at this point that

{load-M
is-a : action-obj
pre-net-relations : (& available-capacity AFtake)
post-net-relations : (& loaded AFohj)
associatod-data : <obj> <op»
pradicate : (resource <ep>) = &
ao-conflict-of :  }

{unload-M
is-a : action-obj
pre-net-relations : (& unload-ready AFobj)
post-net-relations : (& available-capacity AFput)
associatod-data : <obj>
predicate : t
ao-conflict-of :  }

{ process-M
is-a : action-obj
pre-net-relations : (& loaded AFprod)
post-not-relations : (& unload-ready AFnextop)
associated-data : <obj» <op>
predicate : t
ao-conflict-of :  }

AFohj : (name <obj>)

AFtake : (name ona)

AFput : (name ona)

AFprod : (name <obj>; operation <op>)
AFnextop : (name <obj»; operation (next <ep>))

Fig. 3. Composed object modelling the machine prototype (some slots represented here belong to its classes).

AFprod

available-c

Fig. 4. Structure of Petri net underlying the model of workeell C1 at the machine level of abstraction.
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analysis information usefulness decreases once the
model reaches a certain complexity. The model can
also be directly used by a simulation module.’® The
simulator has the typical utilities to associate random
distributions, create events and for data collection,

Software reliability is facilitated by the method-
ology: the designer is constrained to work with a high
discipline imposed by an underlying discrete event
systems formal paradigm (Petri nets) and the use of a
well-recognized design  paradigm  (object-oriented
design).

Two graphical interfaces are available in the en-
vironment to facilitate the creation of models. The first
one facilitates the work at a detailed level; this is a
graphic—textual interface used to facilitate the design of
the internal part of the objects. The most important
internal aspect for control is the one related to the
estates, transitions and its pre- and post-conditions;
the designer has visual access to the graphic features of
the Petri net. The designer has access to the object
hierarchies and their methods. On the other hand, the
tool allows the creation and modification of nets, the
establishment of synchronization relations between
transitions, the animation of model evolution, the
control of that evolution by the user, etc.

The second one is devoted to the manufacturing
engineer. This is an expert in the manufacturing
domain but not necessarily an expert in Petri nets or
object-oriented design. This higher-level graphic tool is
specialized in manufacturing system while it hides
model internal features. It allows the graphic manipu-
lation of MIKRON objects and primitives, and it
becomes the graphical support for the animated
simulation, In addition to icon manipulation, it
provides specialized windows for textual visualization
and manipulation of objects, and access to the relevant
object hierarchies,

5. COORDINATOR
Coordination and monitoring of plant elements are the
basic functions of the coordinator subsystem. To
achieve these goals, the coordinator communicates
with local controllers through a set of signals;

» Controller signals. The coordinator sends orders to
the controllers for the execution of activities. When
the activities are successfully finished activity-end
messages are sent in return. Exception messages are
also sent to the coordinator if any error or exception
arises during an order execution.

® Sensor signals. Set of incoming signals from sensors
complementing coordinator information about
plant evolution.

o Alarm signals. Alarm signals (such as machine and
part breakdowns, abnormal stoppages) can be sent
to the coordinator by operators or special supervisor
systems,

The coordination method is based on the interpreta-
tion of the dynamic behaviour specifications repre-
sented in the system model, The coordination function
is materialized by making the coordination model
evolve, which in turn makes the production system
evolve. This is a closed-loop control where the actions
are the orders sent to the controllers and the feedback
is the composition of the activity-end, exception,
sensor and alarm signals. Decision problems, which
are not solved by the coordinator, can appear during
the evolution of the coordination model. That decision
problems are posed to the dispatcher, which is
responsible for its solution. Plant monitoring function
consists in two activities: data collection and exception
handling. Figure 5 illustrates the internal architecture
of the coordination subsystem and its main modules
are explained in the following paragraphs.

The proposed working architecture allows the use of

REAL TIME
— SCHEDULER DISPATCHER
) | *
( Y COORDINATOR *
COORDINATION
MODEL  feutg frae INTERPRETER
(HLPN} il =
AND I
STATUS
(MARKING)
- ]
e v [ SPECIAL
'K é MODULES
KNOWLEDGE ; EXCEPTION
BASE TRACKING L] HANDLING i
% MODULE :
A 4 MONITORING § ACTIVE
MODULE TASKS
X} I ’

s Exception handling | SENSORS |  ALARM SIGNALS | | controLLers |

Mormal operation

Fig. 5. Coordinator subsystem.
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the same KRON model during system modelling,
simulation and real system control phases. This
approach avoids errors and decreases costs in the
implementation phase, and provides flexibility because
control strategies can be easily changed by a model
updating.

5.1, Interpreter

The interpreter subsystem is the main one responsible
for the coordination function. The interpreter is a
centralized, concurrent and interpreted implemen-
tation of an HLPN 7 that is, a module that materializes
the coordination model evolution by interpreting a
data structure. The interpreter is commonly called the
token player and its main functions are;

¢ Enabling and firing analysis. The evolution of a Petri
net model is carried out by transition firing.
Moreover, in a HLPN model each transition has
several firing modes; this means several firing possi-
bilities depending on the current marking. The
interpreter establishes the set of enabled firing
modes concerning the HLPN state and the external
signals. However, due to conflicts and discrepancies
with the schedule, only a subset of enabling firing

task load_M1 ;
task body load M1 is

begin
loop

modes will be fired. This filtering operation, ordered
by the interpreter, is carried out by the dispatching
subsystem.

* Firing execution. Transition firing modes represent
production system activities, Firing a transition with
respect to a firing mode implies the execution of a
piece of code that implements the communication
protocol between coordinator and controllers,
These pieces of code are configured as tasks to allow
their concurrent execution, Figure 6 shows a typical
example of an Ada task used to implement the code
associated with a firing mode (the code is autodocu-
mented).

* Marking updating. The tokens involved in a transi-
tion firing are retired from the input places when
firing starts, whereas the corresponding tokens are
deposited in the output places at the end of firing.

The communication between the coordinator and
the local controllers is implemented by the following
handshake protocol (its graphical illustration can be
seen in Fig. 7):

(1) A coordinator task communicates with a con-
troller and sends an order to run a specific control
program. If the control program is a Petri net

== The Interpreter orders the execution of associated activity to (part, operatiecn)

== firing mode of transition load_M1

interpreter.start{load_M1) (part,operation) ;

declare time_out_M1: exception ; time_cut_ROBOT: exception ;

begin

-— The task sends a begin operaticn order to M1 and ROBOT controllers

M1_controller.begin_op (part, operation) ;

ROBOT controller.begin_op (part, operatiom) ; T = clock ;
-= The task waits for end operaticn messages from M1 and ROBOT controllers

select

ROBOT_controller.end_op (message_ROBOT) ; T_ROBOT := T = clock ;
select M1_controller.end_op (message_M1) ;
or delay max_processing_time {operation,M1) - T_ROBOT ;

raige time_osut_M1

i~ The cperation on M1 has exceded the maximum processing time

end select ;
or delay max_processing_time (operation,ROBOT) ;
raise time_out ROBOT ; -- The operation on ROBOT has exceded the maximum processing time
end select ;

case meesage(message M1, message_ROBOT) is

when end_op DK => tracking_system.end_task (load_ M1, part, ocperation) ;

when error_M1 =» raise exception M1 ;

when error ROBOT => raise exception_ROBOT ;

vwhen general _failure =»> raise general_sxception

end case ;

== The cperation has been completed successfully
interpreter.end_task (load_M1, part, operatiom) ;

exception

== An exception has eccurred in the operation execution

when time_ocut M1 => exception_handling.time_out_exception (M1} ;

when time_ocut_ROBOT => exception_handling.time_cut_sxception (ROBOT) ;
when exception M1 =» exceptien_handling.centroller_szception (M1} ;

when exception ROBOT => exception_handling.controller_exceptien (ROBOT) ;

when general exception => exception_handling.general_exception (load_M1)

end ;
end loop ;
and ;

1

Fig. 6. Example of Ada task associated with a firing mode.
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implementation, the order can be seen as an event
that enables the firing of a start transition.

{2) The task waits for the controller answer. The
arrival of an activity-end message means that the
order has been successfully completed. Then, the
task reports to the monitoring module the end of
the operation, synchronizes with the interpreter (to
establish the end of transition firing) and finishes
its execution. If the order has been abnormally
finished, an error code is received by the task. In
this case, the task does not establish the synchroni-
zation with the interpreter but it transfers control
to the monitoring module to manage the excep-
tiom,

There is another communication protocol, between
interpreter and dispatcher for decision problem solving
purposes. These problems, from the coordination
point of view, are located in:

(1) Conflicts, They represent situations where there
exist several excluding firing modes. These prob-
lems arise for example when: a product can be
loaded in several resources, a resource is required
for several operation executions, . . .

{2) Transitions modelling operation starts. If all pre-
conditions of an operation are satisfied, then it
must be decided when the operation will be
executed (immediately or some time in the future),
These decisions are generally based on previsions
provided by the current production schedule.

Certain elements of the production system may need
specific coordination functions performed with tech-
niques others than those based on an HLPN. Thus, for
example, it may be important to perform the internal
management of an automatic warehouse with a specific
control system. All that is required in this case is the
construction of the interface between this system and
the HLPN interpreter, which will support the dialogue
regarding request, input and output of parts from the
warehouse.

5.2. Monitoring module
Monitoring activities (data collection and exception
handling) are realized in the proposed architecture by
the monitoring module. This module is itself composed
of two main components: tracking system and excep-
tions handling module,

COORDINATION

* " -

LOCAL CONTROL

RDER ACTIVITY BEND

Fig. 7. Communication protocol between coordinator and local
contrallers.

The tracking system receives information from the
transition firing tasks, special modules, the dispatcher
and, directly, from the plant floor through sensors and
other automatic information gathering devices. The
tracking system generates statistics and historical data
reports from the physical components (e.g. utilization
of tools by machines, down times, set up times, etc.),
operations (e.g. processing times) and orders (c.g.
satisfaction of due dates). It also manages incoming
information from sensors and the dispatcher. This
information is used by the tracking system to compute
the values of events that constitute additional precon-
ditions for transition firings. The information coming
from the dispatcher provides the solutions for the
decision problems (generally scheduling problems).

The exception handling module is in charge of
handling the exceptional situations arising in the
production plant and it is itself decomposed into three
parts: detection, diagnosis and action.

® The detection function is distributed by the co-
ordination system modules that have a relation with
the production plant (active tasks, special modules,
tracking system and exception handling module).
For example, a task associated with a firing mode
can realize the supervision (e.g. time out as in the
example in Fig. 6) of order execution by a local
controller,

» Diagnosis and action functions are centralized in the
exceptions handling module. This module receives
messages from the coordinator’s modules and di-
rectly from the plant. Messages describe: machine
stoppages, part breakdowns, communication fail-
ures, accidents, ete, The exception module will try to
recover the error that has arisen or, if it is not
possible, to lead the production system to a secure
state. The exception module can send emergency
stoppage orders to the controllers and abort the
execution of tasks associated with transition firing.
In any case, this module must guarantee the
coherence between model and production system
states in exceptional situations, and inform the
scheduler of a possible redoing of the operation
schedule (see Fig. 9). Reference 3 proposes the use of
observers and watch dogs over the net evolution for
detection, artificial intelligence and Petri net tech-
niques for diagnosis, and net reconfiguring (change
of net structure or marking) for action. This
approach for monitoring can be easily integrated in
the framework proposed here.

6. COORDINATION EXAMPLE
To illustrate the coordination ideas illustrated above,
let us return to the example presented in Section 3. The
coordination function is based on the transition firing
of the model. For example, transition load-M1 is
modelling on the loading of parts in machine M1, To
load a part in the machine, several constrains must be
satisfied: (a) the robot must be available (a token in
place free of the robot state object), (b) the part must be
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in the store (part marking object must be present in
place stored-parts of the store state object), and (3) the
machine must be free (any token in place available-
capacity of the machine state object). Moreover, the
specified operation on the part must be able to be
carried out on the machine [predicate (resource
<op>)=MI must be satisfied].

The activity modelled by transition load-M1
involves the cooperation between two resources, the
robot and machine M1, For the machine to be loaded,
the robot must pick up a part from the store and start
the approach to the machine M1. Concurrently with
that process, machine M1 tools must be prepared for
operation and it subjection clamps be opened, Then,
the robot is allowed to locate the part in the clamps.
This action is detected by a sensor, which starts the
subjection. When the part is grasped, the robot must
release it and go to a home state, Figure 8 shows a Petri

net representing the described local control function.
In the sequel, we suppose that the local control is also
implemented by Petri nets.

A transition firing, concerning a firing mode, implies
the execution of a task that communicates with the
local controllers. Loading part P1-01 on machine M1
involves the firing of transition load-M1 and the
execution of the task (see Fig. 6) associated with that
firing mode. The interpreter evaluates the enabling of
load-M1 and the dispatcher decides its firing. Then,
the interpreter removes the involved tokens from the
input places and makes active the task associated with
the firing mode [start{load-M1) message in Fig, 8],
Orders to the robot and M1 controllers are sent by the
task. These orders enable the firing of start transitions.
Its own net models are executed by each controller
until the transition end is reached. At this moment, an
end activity message is sent to the coordinator. On

’ '\
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M1 end_task(load_M1) i l start{load_M1)(pari=><obj> operation=><op>)
load-M1 3
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finishing transition lead-M1 firing, a message is send
by the task to the interpreter [end_task(load—M1)
message in Fig. 8] and then the marking is updated:
part P1-01 will be loaded on machine M1 and the
robot will become free.

The exception handling operation will be illustrated
using the same example. Let us suppose the following
exceptional situation: the robot grasping operation
fails and the approach to M1 is made with no part.
Both controllers, from machine and robot, reach a
deadlock because no part presence is detected by the
robot hand sensor. This fact implies that transition
clamp-close from M1 cannot be fired (see Fig. 8).
Following a typical monitoring technique, a watch-
dog can be included in the corresponding active task.
When the maximum time of an operation has been
reached (detection), the associated task communicates
the error to the exception handling module and finishes
its execution. At that moment the following actions will
be carried out by the exception handling module. First,
orders will be sent to the local controllers to conduct
the resources to 4 secure state. After that, an alarm
signal will be sent to the production plant to notify the
operator about the arisen error. This notification is a
request for the operator to provide the adequate
correcting actions. In this case, the operator must place
the part correctly. Additionally, the exception hand-
ling module must be notified about the exception
origin {diagnosis). The next action consists on recover-
ing the previous marking to the exception which
represents the cell actual state (robot free, machine M1
free and part P1-01 in the store). At this point, the
interpreter will try to fire the transition again to

ENOWLEDGE
BASE

continue in normal operation. This process is illus-
trated by Fig. 9.

7. CONCLUSIONS
This paper deals with the problem of software design
for complex manufacturing systems coordination. A
control software architecture, covering the planning,
scheduling, and coordination functions, has been
proposed. The architecture is structured in four
software modules sharing a common knowledge base.

A knowledge representation schema has been devel-
oped to be used in the global knowledge base. This
schema integrates frames, HLPNs and it follows the
object-oriented programming paradigm. Manufactur-
ing system's models are rapidly prototyped within this
schema. The specification of entities’ behaviour, con-
currency, entity synchronization, model analysis, . . .
are facilitated by the underlying Petri net. This one
enforces the precision of models and allows qualitative
and quantitative analysis and simulation.

This paper is mainly focused on the coordination
and monitoring functions. These functions correspond
to the coordinator module of the architecture, which is
also composed of a set of comunicating software
modules. System coordination is materialized by
making the Petri net based coordination model evolve,
which in turn makes the production system evolve,
This is a closed-loop control where the actions are the
orders sent to the controllers and the feedback is the
composition of the activity end, exception, sensor and
alarm signals. The coordinator module allows specific
coordinations realized with techniques other than
those based on Petri nets. Decision problems are not

Fig. 9. Abnormal funetion.

COORDINATOR
B R INTERFRETER
? [ [}
: \
1. stop Bk
Inad-M1 L'l
5. start
task
unboid-h1 L]
oo | ExcErTION
-14' reconfiguring HANDLING sk
RCRINE process-M1
i % 2. abart
L. secure siate meisage
see
| Acarmsionas | | CONTROLLERS

|

7 ST N L
M1 R
conroller

I ]

machine MT

break-down PR




=l

Robotics & Computer-Integrated Manufacturing e Volume 11, Mumber 1, 1994

solved by the coordinator but by a specialized module
called the dispatcher.

The proposed working architecture allows the use of

the same KRON model during system modelling,
simulation and real system control phases, This
approach avoids errors and decreases costs in the
implementation phase and provides flexibility because
control strategics can be easily changed by updating
the model.

10.
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