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Structured Representation of Rule-Based
Specifications in CIM Using Updated Petr1 Nets

G. Harhalakis, Member, IEEE, C. P. Lin, Member, IEEE, 1.. Mark, and P. R. Muro-Medrano

Abstract—A graphical representation tool—updated Petri nets
(UPN)—has been developed to model rule-base specifications for
CIM databases. UPN facilitates the modeling of relationships
between operations of various manufacturing application systems
and the database updates and retrievals among all the respective
distributed databases. Based on this representation, a hierarchi-
cal modeling technique which includes refining and aggregating
rules has also been developed. An application of the UPN is
demonstrated in designing rule-based systems for controlling
and integrating the information flow between manufacturing
applications, including computer aided design, computer aided
process planning, manufacturing resources planning, and shop
floor control.

[. INTRODUCTION

NOWLEDGE-BASED systems have become a main
Kstream for controlling the information flow and facilitat-
ing the decision process in a variety of industrial applications.
A major application of it is manufacturing automation for
the control of both data and physical machining processes.
Our research emphasis is placed on the control and man-
agement of information flow related to production opera-
tions to achieve a computer-controlled factory management
system. Most of the previous and current research projects
emphasize on individual aspects of manufacturing, such as
developing a generic CIM architecture, creating a global
database framework, or interfacing shop floor activities. We
have developed a control mechanism, in the form of a rule-
based system, for managing the information flow among
manufacturing application systems, and for filling the gap
between the high-level production management and the low-
level factory operation. A similar approach has been adopted
by [1] to develop a framework for integrated CIM databases,
using knowledge-based technology. The system architecture
of integrated CIM databases involves both the distributed
database management systems and knowledge-based systems
for sharing information, and the communication between them
is achieved through an integrated interface. Its knowledge
base consists of several types of knowledge, including domain
knowledge, a conceptual data model. a logical structure of
the database, and data accessibility. Our approach, however,
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is emphasizing the knowledge which reflects a company
policy; more specifically, the company rules that establish
the functional relationships of procedures and operations of
various manufacturing application systems.

The emphasis of this paper is to develop a powerful repre-
sentation tool which can be analyzed in order to validate the
underlying domain knowledge extracted from the company
policy and can be implemented into rule production systems
automatically. The ICAM definition (IDEF) developed by
the United States Air Force in their integrated computer-
aided manufacturing (ICAM) program [2] provided a primary
tool of system design and modeling. However, it can not
model adequately precedence constraints or sequences of
events occurring in & manufacturing environment, because of
its limited modeling structure. The GRAI laboratory of the
University of Bordeaux in France has developed the GRAI
method [3] especially for the study of decisional production
systems. The GRAI method has been developed for analyzing,
designing and specifying production management systems in
a context of integration. Based on theory of complex systems,
hierarchical systems, organization systems, and on the theory
of discrete events, it is especially aimed at the study of
decisional aspects in manufacturing systems. Therefore, it
is not suitable for modeling the dynamic behavior of an
information control system.

As a basis, we started with Petri nets for modeling and
analyzing rule bases which reflect a company-specific policy
and expert knowledge. Petri nets have been proven to be
ideal for modeling dynamically and formally analyzing com-
plex dynamic relationships of interacting systems. They were
initially developed and used mainly for advanced computer
integrated system design, both in hardware and software, such
as artificial intelligence in network systems [4], and flexible
manufacturing systems [5]. Most recent applications of Petri
nets in manufacturing systems are focusing again on the shop
floor level, with a large number of workstations, robots, and
transportation systems, to be handled by a central controller
[6]-[8]. Research in modeling manufacturing systems has
been quite extensive in recent years on system validation
and performance evaluation using high-level Petri nets, such
as timed Petri nets, stochastic timed Petri nets, predicate
transition nets, and colored Petri nets [9]-[12]. We chose to
start with colored Petri nets (CPN), which allow the model
designer to work at different aggregation levels in modeling
the flow of information. The main advantage of CPNs over
GPNs is the capability of obtaining a compact representation
of large and complex systems.
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This paper presents a formal representation of rule-based
information systems with a special set of colored Petri nets
(CPN) that we developed, which facilitate the modeling of
complex systems and can still be analyzed mathematically in
order to be validated against the domain knowledge. The next
section outlines our model design approach. The third section
details the features of updated Petri nets (UPN) with examples
from our CAD/CAPP/MRP II/SFC integrated system. The last
section presents our conclusions with recommendations for
future work,

II. MODEL DESIGN APPROACH

Petri nets were originally developed by Carl Adam Petri
in his doctoral thesis, 1962, at the University of Darmstadt,
West Germany. There have been many reports and papers
published on Petri nets with a wide variety of applications
due to their modeling power. Petri nets can be applied to most
systems in representing graphically not only sequential but also
concurrent activities. Because of their mathematical represen-
tation, they can be formulated into state equations, algebraic
equations, and other mathematical models. Therefore, Petri
net models can be validated analytically. Readers may refer
to [13] and [14] or the fundamentals of Petri net theory. A
survey of literature where various types of Petri nets are used
in modeling various systems in general and manufacturing
systems in particular, has been conducted. Worth mentioning
are artificial intelligence in network systems [4], flexible
manufacturing systems [5], scheduling and sequencing [6]-[8],
and information integration for manufacturing applications
[15]-[17].

The domain knowledge dealt with in this research is re-
lated to company policies for the management and control
of information flow in a manufacturing environment. Qur
work aims at linking product and process design, manu-
facturing operations and production management; it focuses
on the control of information flow between each of the
key manufacturing applications at the factory level, includ-
ing computer-aided design (CAD), computer-aided process
planning (CAPP), manufacturing resource planning (MRP II),
and shop floor control (SFC) systems. This company policy
basically reflects the procedures and restrictions of how the
data should be transferred from one engineering application
system of the company to another one; for example, the
information regarding a new work center in our view should be
created in MRP II system, transferred to CAPP for generating
process plans, and landed at SFC for physically installing
and operating the work center. Other companies may have
a different view about the policy on work center creation;
our aim is to present a methodology of policy implementation
instead a working knowledge-based system. Similar work on
describing the relationship between Petri nets and production
rules or logic programs has been done in [18]-[22].

The design and maintenance of a knowledge-based system
(KBS) to control the functional relationships and information
flow within the integrated system is a major task of this project.
Our design methodology, as shown in Fig. 1, starts from
- user-defined rule specifications, reflecting a specific company
policy, which is then modeled using UPN in a hierarchical

Modeling, Analysis, and Feed Back

"Company Policy"

Knowledge
Knowledge Based
Acquisition System
@ GPN
INPUT RESEARCH TASKS OUTPUT

Fig. 1. Knowledge base design methodology.

modeling methodology. We use UPN in modeling not only
the rule base, but also the database states in order to ensure
the consistency in representing database status. The next step
is to convert the UPN model into a set of general Petri nets
(GPN) for validation purposes, and to feed the results back
to the user to resolve i) conflicting company rules and ii)
errors introduced during the modeling phase. After the model
has been validated, a parser translates the UPN model into a
rule specification language for implementation. The advantage
of our methodology is the direct implementation from UPN
models to rule-based systems which facilitates the design life
cycle and any subsequent necessary updates of the rule bases.
A translator has been implemented on a Sun workstation to
translate automatically the UPN model to a rule-based system
in the [35] Update Dependency Language.

ITII. UPDATED PETRI NETS (UPN) FOR INFORMATION SYSTEMS

High-level nets have been introduced to improve the mod-
eling power of Petri nets for large scale and complex systems.
Predicate transition nets [23] have been developed in order
to represent complex systems in a much simpler graphical
form. Work has been done on modeling logic programs with
predicate transition nets [20]. However, the formalism of
predicate transition nets involves “token-color” sets which may
include an infinite number of colors due to new colors created
by transition firings. Therefore, it becomes difficult to interpret
the place-invariants (which is one of the most important
analysis methods for Petri nets), due to the free variables in
those invariants. Colored Petri nets were then proposed by
Jensen [24] in order to overcome this drawback, which define
explicitly the possible token colors attached to each place and a
set of possible occurrence colors to each transition so that only
a finite number of token-colors can be created in the model.
We have proposed a representation which extends the colored
Petri nets formalism in order to utilize both the analytical
power of colored Petri nets and the descriptive power of
predicate transition nets. More specifically, the “updated Petri
nets” (UPN) model, which includes both finite color sets
for logic representation and infinite color sets for data entity
representation, combines the power of both colored Petri nets
and predicate transition nets. Another advantage of UPN is
its ability to model data structures; on this issue some earlier
work has been done by Silbertin-Blanc [28] and similar work
on object-oriented Petri nets has been done by Garmousset [19]
which has also included the concept of aggregation of nets
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at different levels. This section describes the formalism for
knowledge representation of an information system modeled
by UPN. We have extended the primitives of general colored
Petri nets in order to reflect, more closely, the terminology and
semantics involved in a database application domain. These
primitives are used to develop a procedure to automate and
formalize the interpretation process from the model to a rule
specification language. In the following paragraphs we present
the formal definition of UPN, which is based on both the
CP-graph definition and the CP-matrix definition given by
[24].

An UPN is a directed graph with three types of nodes:
places, which represent facts or predicates: primitive transi-
tions, which represent rules or implications; and compound
transitions., which represent sets of related rules (subnets).
Enabling and causal conditions and information flow specifica-
tions are represented by arcs connecting places and transitions.

Formally, an UPN is represented as UPN =
(P.T,C, I~ I", My, I,,MT), which can be decomposed
in three different parts:

1) P, T,C, 17,17, My represent the classic color Petri net
definition. They identify the part of the information
system that provides the conditions for the control of
information flow. Only this part of the UPN is used in
the validation process. Its entities are defined as follows
[24]:

. P = {p1.---,pn} denotes the set of places
(represented graphically as circles).

. T = {t1,---,tm} denotes the set of primitive
transitions (represented graphically as black bars).

s PNnT=0and PUT £ 0.

*  C is the color function defined from P|JT into
non-empty sets. It attaches to each place a set of
possible token-data and to each transition a set of
possible data occurrences.

» I~ and T are negative and positive
incidence functions defined on P x T,
such that I~ (p,¢),I7(p,t) € [Clt)us —

C(p)msle V(p,t) € P x T, where Sys denotes
the set of all finite multisets over the non-empty
set S, [C(t)ms — C(p)ums) the multiset extension
of [C(t) — C(p)ms], and [...]r denotes a set of
linear functions'.

*  The net has no isolated places or transitions:
Vpe P,3teT: I (p,t) A0V IT(p,t)#0 and
VieT,Ipe P: I (p,i) A0V It(p,t) #0

* My the initial marking, a function defined on P,
such that:

Mo(p) € C(p),Vp € P.

2) I, is an inhibitor function defined on P x T, such that:
Io('p.t) € [C(t)MrS — (]('p)MS}L-, V(p t) ePxT.

3) MT = {hma,---,hm;} denotes the set of related tran-
sition sets. These are sets of transitions grouped into
subnets.

! Although, any linear function is allowed in the general color Petri net,
only projections, identities and decolorizing functions have been needed so
far in our models.

From a rule-based perspective, we have divided the repre-
sentation of knowledge base components in the following four
groups: Data, Facts, Rules, Sets of Rules. In the following
sections we define the syntax and semantics of the UPN
elements representing those groups. To illustrate our approach,
we focus on an example scenario, creation of a work center
via MRP Il and, particularly, on one of its subnets, the release
of a work center in MRP II as shown in Fig. 2, which is
used all along this section. The specification of the example
is expressed in a natural language (in the appendix) and
represented here using UPN primitives.

A. Data

In information systems, the user needs to refer to atomic
data, and establish relations between different data, by struc-
turing information into composed data objects, called database
relations or records. In order to a) provide a more adequate
representation to facilitate the translation of the user speci-
fications, b) give a more clear graphical representation, and
¢) make the validation process easier, UPN allow for the
specification of the following classes of information (in general
we refer to any of these data classes by the generic name
“data” or ““color’”):

Atomic data is individual information with a lexical repre-
sentation. Each atomic data is represented by an identifier,
a color, which is attached to a specific token, whose
syntax is an alpha-numerical sequence. As an example,
let us suppose that a part in CAD can be in four different
statuses: w (working), r (released), i (hold), or o (ob-
solete). We can describe them as four constant symbols
(w, T, h,0) which can be grouped to form the status color
set: DSTS = {w. 7, h,0}.

Atomic data can belong to one of the following two
classes: fixed, if the color set is completely known in
advance, such as the set status which was described above
DSTS = {w. 7, h,o}, and non-fixed, if not all of the color
set components are completely known in advance, such as
the information about a part identification number in CAD,
which can be an alphanumerical sequence (e.g., ¢157635)
or the description of a part record which can be any string
(e.g., “Fine-pitch involute spur gear”).

This last example raises another interesting point related
to non-fixed data. There is some data, such as a part
identification number, that is normally used to guide the
control of information flow; generally, preconditions of a
rule can be related a specific part identification number,
but normally, specifications do not care about the specific
instances of its description; in other words, the description
is associated to a specific part and it is “flowing” with
it in the system, but no precondition check for a specific
description is necessary. Thus, non-conditional data refer
to information which is not important for the control of the
system and their flow is controlled by conditional data.
Data structure is the classical mechanism to aggregate
related data. Therefore, instances of data structures can
be seen as ordered tuples (s;, $s....,s,). Different tuples
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() PL@init)
t1
MRP II _
dBS Mwe(wcid=wcid#) weid#
P2
wcid#

e Mwc(wcid=weid# . p3 t4
des=des#,dep=dep#, 2 weid#,des#,dep#,
5t5=h,ste= o

EMwc = A
q Mwe{wcid=weid#,sts=r) p5
wcid#,des#,dep#,

Mwe(weid=weid#,sts=h,ste=na)

Mwec(weid=weid#,
cap=cap#,sts=r)

weid#,des#,dep#,

cap#

t1: request and read weid

t2: write error message and restart
t3: write error message

t4: request other information

t5: update work center record in MRP II dBase
with sts=r, and additional data,
insert a work center record in CAPP dBase

Fig. 2.

can be identified by their relation name, (/). and different
elements of a tuple can also have textual identifications

Ao, A,,. This means that every tuple is represented
as (R)(Ai,..., A ), where (R) is the database relation
name and Aq,..... 1,, are textual identifications for its

attributes. A specific element of a tuple can be accessed in
two ways: either by referencing its specific position within

33

that tuple (“—, —,...,v;,...,="),

2

attribute name (“A4; = v;”).

or by referencing its

To illustrate the model adopted for data representation, let
us consider the specifications related to a work center record in
MRP II. This record is represented in UPN by a data structure
named Mwe (where M identifies the MRP II database and
we identifies the work center record). Tts composition, char-
acteristics of its attributes, and its representation are shown in
Table I

Mwe(weid=wcid#,sta=h)

e CAPP

dBS

=)

NPwc

Pwc(wcid=wcid#)

Pwe(wcid=wcid#)

O

EPwc

Pwe(wcid=wcid#,des=des#,
dep=dep#,cap=cap#,ste=w)

pl(p_init); user starts the transaction

p2: weid is provided

p3: work center ID does not exist in MRP I1

p4: work center already has 'r' status in MRP II

p5: all the necessary data is provided

p_ret: return of the procedure call

EMwec: existence of work center in MRP II dBase
NMwec: non-existence of work center in MRP II dBase
EPwc: existence of work center in CAPP dBase
NPwc: non-existence of work center in CAPP dBase

Subnet of the work center creation scenario: “Release of a work center in MRP II” with initial marking.

B. Facts

Each fact declares a piece of information about some data,
or data structure, in the system. To be able to model the access
and exchange of information in a consistent and generic way,
we need to define specific semantics to describe facts. This
problem becomes more important if we consider a modular
modeling methodology, where the user must be allowed to
create different subnets for different scenarios which can be
linked together later to form an unified model.

Facts in UPN are represented by places. Places are one of
three kind of nodes in a UPN and are graphically represented
as circles. The fact asserted by one place is determined by the
place name and its content. The content defines the marking of
the place; we will refer to the marking of place p by M (p). For
example, the fact that a token of color A is in place inprocess,
can be interpreted as: “A is in process” or inprocess(A) in
logic syntax.
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TABLE 1
Data STRUCTURES AND COLOR SETS OF WORK CENTERS

Attibute | Data class | Color set DB data type Description

weid non fixed WCID identification identification number

des non fixed | DES text description

dep non fixed | DEP text department

cap non fixed | CAP integer capacity

sts fixed MSTS {h,r} (hold, release) work center status code

ste fixed MSTE | {na,av} (not avail., avail.) | work center state code

res non fixed | RES text resource code

esd non fixed | ESD date effectivity start date

Complete data structure for work center in MRP II
Mwe(weid, des, dep, cap, sts, ste, res, esd)
Attibute | Data class | Color set DB data type Description
weid non fixed WCIiD identification identification number
des non fixed | DES text description
dep non fixed | DEP text department
cap non fixed | CAP integer capacity
sts fixed PSTS {w, h,r} (working, hold, release) | work center status code
Complete data structure for work center in CAPP
Pwe(weid, des, dep, cap, sts)

Tokens in places NMwc and NPwe from Fig. 2 represent
the non existence of a record in MRP II and CAPP databases
respectively. On the other hand, tokens in places EMwc and
EPwc represent the existence of a record. The interpretation
associated with each of the rest of the places is provided in
the figure.

Regarding facts, places can be of two different types:

Local scope: when a place is used to represent a local fact
(relevant only to one specific scenario or subnet) which
will not affect the state of the other scenarios or subnets.
They are typically used to represent intermediate state facts
within the decision process. Examples of local places are
P1.P2.03.P4,.D5 in Flg #
Global scope: when a place is used to represent a fact
relevant to (accessible by) different scenarios or subnets.
Global places must be referred to by the same name in
all of their occurrences. Typical examples of global places
are facts about database state information, such as places
EMuwe an N Mwe (in the MRP II database) and EPwe
and N Pwe (in the CAPP database) shown in Fig, 2.
Regarding the user interface, there are two special types of
places to enable the exchange of information with the user
(these places belong to local scope):

Input places represent facts whose initialization is gener-
ated by an external action (i.e. by a request from the user
through the interface). An example of an input place is
place p; shown in Fig. 2, which needs the introduction of
a token for the release process to start.

Outpurt places are used to represent situations where some
information must be passed to the user (i.e., some infor-
mation to be displayed). An example of an output place
is place py shown in Fig. 2, the value provided in weid#
will be displayed.

The concept of input and output places is similar to that
of source and sink places [26] and, in addition, provides a
mechanism to specify terminal facts during consistency and
completeness verifications of the knowledge model.

C. Rules

Another important feature in modeling information systems
is the representation of information flow. Here, we are con-
sidering domains where the user specifies information flow
policies using “if then” rules. These rules are expressed in UPN
by means of fransitions. Any transition ¢ has a color set, C'(1),
associated with it. The net in Fig. 2 shows five transitions (
t1,t2,t3.%4,75) and their associated interpretations.

In this section we explain how several components of rules
(preconditions, postconditions, variables, etc.) are represented
and used in UPN.

Variables: UPN characterize references to generic data-
using variables (in the sense that a relation can hold for
different data occurrences). There exists a set V' of typed
variables. Each variable v : D has a name v and an associated
color set D). They are represented graphically by names ending
with the symbol “#". Examples of variables are wcid#, des#,
dep#, and cap# as shown in Fig. 2.

Arcs: Arcs are relations that connect facts and actions to
form rules, and constitute the rule preconditions and postcon-
ditions. Arcs also identify the flow of information. Formally,
each arc has attached to it an arc expression, exp, containing a
set of variables or constants {vy : Dy,vs : Do, -+, v, : Dy},
where [, identifies the color set of the variable or constant v;.

The lambda-expression, A(vy,ve, -, v, ).€xp is defined as
a mapping from Dy x Da % --- x D, into C(p), where the
place p is source/destination of our arc.
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MRPII
dBS
O Mwe(weid=wcid#)
NMwe
EMwe | Mwc(weid=wcid#,
cap=cap#,sts=r)

Mwd(wcid=VMC12,des=Faddal VMC,
dep=Machine shop,cap=8,sta=h,ste=na)

MRPII
dBS

NMwc /

Mwc(weid=wcid#)

Fon

EMwc | Mwc(wcid=wcid#,

cap=cap#,sts=r)

Mwc(wcid=VMC12,des=Faddal VMC,
dep=Machine shop.cap=8.sts=r.ste=na)

Fig. 3.

UPN use variables as in typical rule-based systems, where
they are used to specify data sets within the enabling arcs of
a rule and as a mechanism to transfer data from the precon-
ditions to the postconditions. For example, looking at the arcs
between transition ¢4 and place ps in Fig. 2, the information
about variables des# and dep# is needed to go to place ps,
and is tranferred from place EMwe, as shown in the arc
expression.

In general colored Petri nets, upon the firing of a transition,
the enabled colors are taken out from the incoming places. We
have introduced a special case in UPN, in situations where a
place represents a database related fact and the color of its
token represents a record. In case of firing, all the information
of that record is removed from the place, while only a subset
of its attributes may be involved for the required updates.

Pwe(wcid=VMC12)

pb CAPP

wcid#,des#,dep# dBS
cap#,ste# ,©/
Pwe(wcid=wcid#) >
NPwc

)

Pwe(weid=wcid#,des=des#,

dep=dep#,cap=cap#,sta=w) EPwc
p5 CAPP
wcid#,des#,dep# dBS
cap#,ste#
Pwe(wcid=wcid#) D
NPwc

Pwc(wcid=wcid#,des=des#, EPwe

dep=dJept,cap=cap#,sta=w)

Pwe(wcid=VMC12,
des=Faddal VMC, dep=Machine shop,
cap=8.sts=w)

UPN representation of the rule “Release work center from MRP IL”

The information about these unspecified attributes must also
be included in the color set of the destination transition to
transfer those information from one database to the other or
back to itself, For example, looking at transition #5 in Fig. 2,
the attributes des, dep, and ste of the MRP 1T work center table
are not shown in the arc expressions for the update of the work
center record (pair of arrows from and to the place EMwec).
However, these attributes have to be included in the colored
set of transition ¢5 as shown in Table I. One of these variables
is used for each record attribute, which is not specified in
the expressions of arcs connected to that transition. They are
identified by names ending with the symbol “0”,

Each transition can have an associated predicate, pred, to
impose additional constraints for the enabling of the transition.
This predicate is a boolean expression which can only contain
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those variables which are already in the expressions of all arcs
connected to that transition. To avoid degenerate transitions,
the predicate must differ from the constant predicate false. The
predicate is supposed to be frue by default. Simple predicates
can be grouped by means of the following logical operators:
—(not), V(or) and A(and).

The color set, C(t), of a transition, ¢, ¥t € T, is determined
by [24]:

C(t) = {(d1.ds,....dn) € D1 x Da x -+~ x Dy
| (A(vy,ve, -, v,) pred)(dy, da, ... dy)}

where
* pred is the predicate attached to ¢, and
s V(t) = {v1 : Dy,v2 : Do,---,un @ Dy} is the set
of all variables appearing in the expressions of all arcs
connected to the transition.

As an example, let us look at Fig. 3(a), which focuses on
transition ¢5 of the net shown in Fig. 2. The color sets for
the associated places are as follows (the simple color sets are
specified in Table I):

C(EMwc) = MWC = WCID x DES x DEP x CAP
x MSTS x MSTE x RES x ESD
C(NPwc) = WCID
C/(EPwc) = PWC = WCID x DES x DEP x CAP x PSTS
C(ps) = WDDC = WCID x DES x DEP x CAP

There are four variables in the arcs connected to (5
(weid#, des#, dep# and cap#). On the other hand, /5 has an
incoming arc from place EMwc, a database place for the
record Mwc (wcid,des,dep,cap,sts,ste,res,esd), and there are
five attributes which do not need to be specified in the arcs
to/from EMwc: des, dep, ste, res, and esd. The total set of
variables and the color set for the transition ¢5 are

V(ts) = (wcid# : WCID, des# : DES, dep# :
DEP, cap# : CAP, mste# : MSTE,
res# : RES, esd# : ESD)

C(t5) = MWCS = WCID x DES x DEP
x CAP x MSTE x RES x ESD.

Functions in [~ and [T are defined in terms of lambda
expressions with the form f(c) = A(V)exp(c), where ¢ €
C(t) and exp is the expression associated to the arc. For
transition {5, V' € MWCS can be represented as follows:

V' = (weid#, des#, dep#, cap#, mste#, rest, esd#)

UPN provides different types of arcs:

Enabling arcs are directed arcs which connect a place/fact
with a transition/action and define a precondition for the
transition. They indicate the data that must be in a place for
a transition to be enabled and must be removed from that
place on firing. Given C(t) and V(1) defined as above for
some transition ¢ € T, if a single arc from a given p € P
exists, with arc expression exp, I~ (p,t) is then defined to

be the function A(vq,v2,- -+, v,). exp (mapping between
C(t) and C(p)). If no arc from p to ¢ exists, I (p,t) is
the zero-function. For example, these are the enabling arcs
for transition {5 from Fig. 3(a):

weid#
= : | des#
I~ (ps,ts) : exp = depitt
cap#

)\(V) eXPIE [MWCSMS — WDDCMS]L such

that
AV exp(c) = (weid#, des#, dep#, cap#)

I~ (EMuwe, ts) : exp = [weid = weid#],

)\(V) exp € [MWCSMS — MWC_\-Ile such that
AV).exp(c) = EMwe(weid = weid#)

o I (NPwe, i) : exp = [weid#],

/\(V)exp S {MWCS_}\,{S — WCIDMS}L such that
A(V).exp(e) = (weid#)

Causal arcs are directed arcs which connect a transition
with a place and define a postcondition for the rule. Causal
arcs describe modifications to be performed in the state of
the net when the transition is fired; and more concretely,
they indicate which data must be added to a place after the
transition has been fired. I™ is defined in the same way
as I—, but by means of the arcs from transitions to places.
For example, these are the causal arcs for transition 5
from Fig. 3(a):

weid = weid#

des = des#
o IT(EMwc,ls) s exp = |dep = dep#
cap = cap#
RIS = r
A(V) exp € [MWCSMS — MWCMS]L such that
AV).exp(e) = EMwe(weid = weid#, cap =
cap#, sts = r)
weid = weid#
e IT(EPwc,ts) : exp = jj; o ii;f;
sty = w

)\(V') exp € [MWCS),IS — PVVC{.\‘IS]L such that
AMV).exp(c) = EPwc(wcid = wcid#,des =
des#, dep = dep#,cap = cap#t, sts = w)

Checking arcs indicate which data must be present in
a place, in order to enable a transition, but no data
are removed upon firing. They are represented by an
enabling and a causal arc, with identical arc expressions.
These are generally used to indicate database checkings.
For example, transition ¢ and place EMwc in Fig. 2
are connected by a checking arc with the associated arc
expression: Mwc(wcid = weid#). This is a precondition
for ¢5 to be enabled, but after the transition has been fired,
no data are removed from or added to EMwe. Arcs between
ty and NMwe and arcs between t, and EMwc are also
checking arcs.

Inhibitor arcs indicate which data must not be present in
a place in order to enable a transition. It is graphically
represented as an enabling arc ending in a small circle.
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Itis also possible for a transition to request information from
the user interface. This is done whenever an arc expression
requires some information that has not been provided by the
variables in the enabling or checking arcs.

Transition Enabling and Firing: The dynamic behavior of
the net is provided by transition enabling and firing. A tran-
sition £ € T is said to be enabled with respect to a color
¢ € C(t) if the current marking M is such that

M(p) > I™(p,t)(c) and M(p) < L,(p,#)(c),¥p € P.

An enabled transition may be chosen to fire. The firing of
a transition t with respect to a color ¢ consists of removing
I7(p,t)(c) colors from each of its input places and adding
I (p,t)(c) colors to each of its output places. Each firing
creates a new set of conditions, and the total number of colors
in the net may change after each firing.

In order to illustrate the previous concepts, we focus on
transition ¢5 in Fig. 3(a). For this explanation, let us consider
the following initial marking;

My(NMwe) =
Mo(EMwe) = (vmel2, “Fadal VMC”, “machine shop”,
aull, w, na, mi2, aull)
= Mwc(wcid = vmel2, des = “Fadal VMC”,
dep = “machine shop”, cap — null,
Sis = w, ste = na, res = ml2, esd = null)
My (NPwce) = vmel?2
My(EPwe) = 0
Mo(ps) = (vmc12, “Fadal VMC”, “machine shop”,8)

It is clear that transition t5 is enabled with respect to the
following specific color (note that the entire color set for
transition 15 is C'(t;) = MWCS):

¢ = (vmel2, “Fadal VMC”, “machine shop”,

mudl, na, mI2, null)

Because c satisfies the following enabling rules, ¢; is then
enabled.

Mo(NMwc) > X(V)exp(c) =0
My(EMwc) > A(V) exp(c) = vmel2, “Fadal VMC?”,
“machine shop”, null, w na, mI2, null
My(NPwe) > M(V)exp(c) = vimncl2
My(EPwc) > A(V)exp(c) = 0
My(ps) > M(V) exp(c) = (vmel2, “Fadal VMC”,

“machine shop”, 8)

where exp represents the corresponding arc expression, and V'
is as defined in Section II-C

The firing of transition ¢5, with respect to color ¢, implies
the removal of the tokens corresponding to the arc expressions
from the input places and the addition of the tokens defined

by the causal arcs to the output places:

My(NMwe) = A(V)exp(c) = 0

Mo(EMwce) = A(V) exp(e) = (vmel2,
“Fadal VMC”, “machine shop™ , 8, r,
na, ml2, null)

My(NPwe) = M(V)exp(e) =0

My(EPwe) = MN(V') exp(c) = (vmel2, “Fadal VMC”,
“machine shop”, 8, w)

Mo(ps) = AM(V)exp(c) = 08

The final marking after transition {5 fires is the following
(Fig. 3(b)):

Mo(NMwe) = ()

My(EMwe) = (vmcel2, “Fadal VMC”, “machine shop”,

8, r, na, mi2, null),

My(NPwe) = )
My(EPwe) = (vinel2, “Fadal VMC”, “machine shop”,
8, w)
Mo(ps) =10

D. Sets of Rules

Sets of Rules or rule sets provide a higher level repre-
sentation mechanism. They establish relations between rules.
In UPN formalism, a ruleset is represented by a subnet.
Rule sets increase the efficiency of the rule control process.
Grouping related rules together saves substantial amount of
time in searching appropriate sets of rules which are due to be
executed together and be invoked many times. In other words,
a rule set reflects a restricted set of rules that are bound to
be called upon together and repeatedly. They are mainly used
in UPN as a mechanism to define subnets which allow for
the structural composition of the rule specification knowledge.
They will be further discussed in the next section where our
modeling approach is presented.

IV. MODELING APPROACH

Generally speaking, any “company policy” starts from the
specification of general global rules which describe aggregate
operations for a given entity within the system. These rules are
then further refined into more detailed specifications, in a step-
wise manner, until no aggregate operations are left. Following
a similar concept, a hierarchical modeling method using UPN
has been developed which allows the system designer to start
from abstract global nets and continue with successive refine-
ments until the desired degree of detail has been reached. In ad-
dition to the refinement of rules within each scenario, it is nec-
essary to synthesize all scenarios for all entities to form a co-
herent net representing the company-wide policy in the system.

Some work in hierarchical representation using Petri nets
has been done for various applications [27], [29]-[31]. We
have adopted the ideas from Suzuki and Murata and the
hierarchical modeling methodology used is discussed in detail
in the following sections.
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those variables which are already in the expressions of all arcs
connected to that transition. To avoid degenerate transitions,
the predicate must differ from the constant predicate false. The
predicate is supposed to be 7rue by default. Simple predicates
can be grouped by means of the following logical operators:
—(not), V(or) and A(and).

The color set, C'(¢), of a transition, ¢, Vt £ T, is determined
by [24]:

C(t) = {(dhdg,....‘dn) €D xDyx---xD,
| (A(vr, 00, up)pred)(dy, da, ... dy)}

where
e pred is the predicate attached to ¢, and
e V(t) = {v1 : Dy,va : Do,---,v, : D,} is the set
of all variables appearing in the expressions of all arcs
connected to the transition.
As an example, let us look at Fig. 3(a), which focuses on
transition ¢; of the net shown in Fig. 2. The color sets for

the associated places are as follows (the simple color sets are
specified in Table I):

C(EMwc) = MWC = WCID x DES x DEP x CAP
x MSTS x MSTE x RES x ESD
C{NPwc) = WCID
C(EPwc) = PWC = WCID x DES x DEP x CAP x PSTS
C(ps) = WDDC = WCID x DES x DEP x CAP

There are four variables in the arcs connected to t5
(wcid#, des#, dep# and cap#). On the other hand, {5 has an
incoming arc from place EMwe, a database place for the
record Mwc (weid,des,dep,cap,sts,ste,res,esd), and there are
five attributes which do not need to be specified in the arcs
toffrom EMwc: des, dep, ste, res, and esd. The total set of
variables and the color set for the transition ¢; are

V(ts) = (weid4t : WCID, des# : DES, dep# :
DEP, cap# : CAP, mste#f : MSTE,
res# : RES, esd#t : ESD)

C(ts) = MWCS = WCID x DES x DEP

x CAP x MSTE x RES x ESD.

Functions in /[~ and I™ are defined in terms of lambda
expressions with the form f(c) = A(V)exp(c), where ¢ €
C(l) and exp is the expression associated to the arc. For
transition (5, V' € MWCS can be represented as follows:

V = (wcid#, des#, dep#, cap#, msie#, res#, esd#)

UPN provides different types of arcs:

Enabling arcs are directed arcs which connect a place/fact
with a transition/action and define a precondition for the
transition. They indicate the data that must be in a place for
a transition to be enabled and must be removed from that
place on firing. Given C'(¢) and V/(¢) defined as above for
some transition ¢ € 7, if a single arc from a given p € P
exists, with arc expression exp, /~(p,t) is then defined to

be the function A(vy,vs, -, v,). exp (mapping between
C(t) and C(p)). If no arc from p to ¢ exists, 1~ (p, 1) is
the zero-function. For example, these are the enabling arcs
for transition t; from Fig. 3(a):

weid#
o : | des#
& (po:tﬁ) CEeXp = dep#
cap

)\(V). exXp € [MWCSMS — WDDCMSIL such

that
AV).exp(c) = (weidft, des#, dep#, cap#)

o T (EMuwc,ts) : exp = [weid = weid#],
/\(V—) exp € [MWCS\IKD — MWCMS]L such that
A(V).exp(c) = EMwe(weid = weid#)

s I (NPuwc,ts) : exp = [wcid#],
A(V)CXP = [MWCS]\,{S e WCIDMS]L such that
A(V).exp(c) = (wecid#)

Causal arcs are directed arcs which connect a transition
with a place and define a postcondition for the rule. Causal
arcs describe modifications to be performed in the state of
the net when the transition is fired; and more concretely,
they indicate which data must be added to a place after the
transition has been fired. /T is defined in the same way
as 1~ but by means of the arcs from transitions to places.
For example, these are the causal arcs for transition {5
from Fig. 3(a):

weid = weid#
des = des#
o IT(EMwc,ts) : exp = |dep = dep#
cap = cap#
s = r
A(V}.E‘Xp € [MWCSMS — MWCMS]L such that
AMV).exp(e) = EMwc(weid = weid#, cap =
cap#, sts = 1)
weid = weid#
e IT(EPwc,t5) exp = SE; B iZ;j;
SLs = w

/\(V) exp € [MWCSMS = PI/VG_\-IS]L such that
A(V).exp(c) = EPwc(wcid = weidff, des =
des#, dep = dep#,cap = capFt, sts = w)

Checking arcs indicate which data must be present in
a place, in order to enable a transition, but no data
are removed upon firing. They are represented by an
enabling and a causal arc, with identical arc expressions.
These are generally used to indicate database checkings.
For example, transition ¢, and place EMwc in Fig. 2
are connected by a checking arc with the associated arc
expression: Mwe(wcid = weid#). This is a precondition
for #2 to be enabled, but after the transition has been fired,
no data are removed from or added to EMwe. Arcs between
to and NMwc and arcs between t4 and EMwc are also
checking arcs.

Inhibitor arcs indicate which data must not be present in
a place in order to enable a transition. It is graphically
represented as an enabling arc ending in a small circle.
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It is also possible for a transition to request information from
the user interface. This is done whenever an arc expression
requires some information that has not been provided by the
variables in the enabling or checking arcs.

Transition Enabling and Firing: The dynamic behavior of
the net is provided by transition enabling and firing. A tran-
sition t € T is said to be enabled with respect to a color
¢ € C(t) if the current marking M is such that

M(p) > I (p,t)(c) and M(p) < L,(p,t)(c),¥p € P.

An enabled transition may be chosen to fire. The firing of
a transition ¢ with respect to a color ¢ consists of removing
I7(p,t)(c) colors from each of its input places and adding
It (p,t)(c) colors to each of its output places. Each firing
creates a new set of conditions, and the total number of colors
in the net may change after each firing.

In order to illustrate the previous concepts, we focus on
transition {5 in Fig. 3(a). For this explanation, let us consider
the following initial marking:

My(NMwc) = ()
My(EMwe) = ('Umch, “Fadal VMC”, “machine shop”,
null, w, na, mi2, null)
= Mwe(wceid = vmel 2, des = “Fadal VMC”,
dep = “machine shop” ., cap = null,
sts = w, ste = na, res = m12, esd = null)
My(NPwce) = vmel2
My(EPwe) =0
Mo(ps) = (vmel2, “Fadal VMC?, “machine shop”,8)

It is clear that transition ¢5 is enabled with respect to the
following specific color (note that the entire color set for
transition ¢5 is C'(t5) = MWCS):

c = (vmel2, “Fadal VMC”, “machine shop”,

null, na, mi12, null)

Because ¢ satisfies the following enabling rules, ¢5 is then
enabled.

Mo(NMwe) > M(V)exp(c) = 0
My(EMwc) > A(V)exp(c) = vimcl2, “Fadal VMC”,
“machine shop”, null, w na, m12, null
Mo(NPwe) = A(V)exp(c) = vmel2
My(EPwe) = MV)exp(c) =0
Mo(ps) 2 MV) exp(e) = (vmel2, “Fadal VMC?,

“machine shop”, 8)

where exp represents the corresponding arc expression, and V'
is as defined in Section 1II-C

The firing of transition t5, with respect to color ¢, implies
the removal of the tokens corresponding to the arc expressions
from the input places and the addition of the tokens defined

by the causal arcs to the output places:
My(NMwe) = M(V) exp(c) =
Mo(EMwce) = A(V) exp(c) = (vmel2,
“Fadal VMC”, “machine shop” , 8, r,
na, ml12, null),
My(NPwe) = A(V) exp(c) = 0
Mo(EPwc) = M(V) exp(c) = (vimel2, “Fadal VMC?”,
“machine shop”, 8. w)
Mo(ps) = MV)exp(c) = 0
The final marking after transition #; fires is the following
(Fig. 3(b)):
Moy (NMwe)
My(EMwe)

]
(‘umle, “Fadal VMC”, “machine shop”,
8 r, na, m12, null),

My(NPwc) =0
My(EPwc) = (vimel2, “Fadal VMC”, “machine shop”,
& w)
My(ps) =10

D. Sets of Rules

Sets of Rules or rule sets provide a higher level repre-
sentation mechanism. They establish relations between rules.
In UPN formalism, a ruleset is represented by a subnet.
Rule sets increase the efficiency of the rule control process.
Grouping related rules together saves substantial amount of
time in searching appropriate sets of rules which are due to be
executed together and be invoked many times. In other words,
a rule set reflects a restricted set of rules that are bound to
be called upon together and repeatedly. They are mainly used
in UPN as a mechanism to define subnets which allow for
the structural composition of the rule specification knowledge.
They will be further discussed in the next section where our
modeling approach is presented.

TV. MODELING APPROACH

Generally speaking, any “company policy” starts from the
specification of general global rules which describe aggregate
operations for a given entity within the system. These rules are
then further refined into more detailed specifications, in a step-
wise manner, until no aggregate operations are left. Following
a similar concept, a hierarchical modeling method using UPN
has been developed which allows the system designer to start
from abstract global nets and continue with successive refine-
ments until the desired degree of detail has been reached. In ad-
dition to the refinement of rules within each scenario, it is nec-
essary to synthesize all scenarios for all entities to form a co-
herent net representing the company-wide policy in the system.

Some work in hierarchical representation using Petri nets
has been done for various applications [27], [29]-[31]. We
have adopted the ideas from Suzuki and Murata and the
hierarchical modeling methodology used is discussed in detail
in the following sections.
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TABLE II
PoSITIVE INCIDENCE FUNCTIONS
i1 tz {3 iy ts
It WCID WCID WCID MWCS MWCS
-NMwc | WCID 0 id 0 0 0
= weid = py
Muwe id = Muwe weid =P Mwe des = pp
EMwc MWC 0 0 dbm { pesids pl } dbm dea'="13 dbm dep = p3
sts=r d::i:_;;_g HESE T
sts=r1
NPwc WCID 0 0 0 0 0
Muwe wad_: P1
EPwc | PWC 0 0 0 0 dbm it |
ep = p3
sts = w
P1 E 4] abs 0 0 0
P2 WCID id 0 0 0 0
pa WCID 0 id 0 0 0
P4 WCID 0 0 id 0 0
P1
Ps wDDC 0 0 0 gg 0
P4
TABLE III
NEGATIVE INCIDENCE FUNCTIONS
11 to i3 14 ts
it WCID  WCID WCID MWCS MWCS
NMwc | WCID [§) id 0 0 0
weid = pq M u,;‘:;d_:ppl
EMwc | MWC 0 0 dbm™** { weid = Py } dbm™®¢{ des=m dbir S0 -
sts =1 dep = p3 IS
stsisih sts=T1
NPwc WCID 0 0 0 0 0
o weid = py
EPwc | PWC 0 0 0 0 dbm =t
sts = ws
P1 E 0 abs 0 0 0
P2 WCID id 0 0 0 1]
P3 WCID 0 id 0 0 0
P4 WCID 0 0 id 0 0
Pl
s WDDC 0 0 0 g'g 0
P4

A. Top-Down Stepwise Refinement Technique

The top-down stepwise refinement technique has been de-
veloped for the modeling of each scenario from an abstract and
aggregate level to a detailed level. This approach necessitates
the development of new Petri net modeling entities which
include two types of transitions as mentioned in the previous
section; one is primitive transitions representing primitive
rules, and the other is compound transitions representing rule
sets which can be further refined into subnets. The connections
are represented by calls from one compound transition of the
net at the abstract level to the subnets at the more detailed
level. Two techniques for constructing compound transitions
are presented below. However, the reader should note that this
refinement procedure does not retain the properties at different
levels of abstraction. It is not our intension to retain the same
behavior from higher to lower level nets since we are only
interested in analyzing the lowest level nets which represent
the most detailed and implementable company policy.

Horizontal Composition of Rules: hmrules: Rules at the
same level of abstraction can be connected to form subnets.

This horizontal composition allows the aggregation of rules
under specific criteria. Horizontal compositions are established
by means of what we call “hmrules.” A hmrule hm,, specifies
a relation in a subnet with a set of transitions {#1,%2, ..., tm },
where m > 1 and t; is defined at the level of abstraction
a,Vt; € hmg,. A subnet, defined by metarule hm,. is
composed by the set of transitions and the places that are
interconnected together.

Hmrules are generally used to identify various scenarios
used to refine a compound transition at a lower level of
abstraction. This aggregation is very useful at the imple-
mentation stage, because a complete subnet is translated into
one procedure, which avoids the use of local variables and
makes the code more efficient. For example, if the complete
subnet were implemented by several procedures, additional
local variables would be required to pass the state of one
procedure to the other, in order to complete the execution of
the complete subnet with no user interruption.

An example of a horizontal composition is one of the sub-
nets of the work center creation scenario, related to the release
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of a work center in MRP II, shown in Fig. 2. The five rules
related with that scenario are grouped together represented by
transition 75 in Fig. 5. The formal representation of that subnet
is specified by its incidence functions as shown in Tables II
and III. The color sets for the places are such that
E = {e}
MWC = WCID x DES x DEP x CAP x MSTS
x MSTE x RES x ESD
MWCS = WCID x DES x DEP x CAP x MSTE
x RES x ESD
WDDC = WCID x DES x DEP x CAP
PWC = WCID x DES x DEP x CAP x PSTS.
The incidence functions used in this application are listed as
follows:
1) id: identity function (id(V) = V).
2) abs: decolorizing function (abs(V) = &).
3) p;: ith projection function (p;(V) = w;).

4)
*’,1:171 = pyl
Az ='p ; :
dbm™® o = Pue L database mapping function.
Agppr = Czy
Az, =y
where

I? represents a database relation

Aj represents jth attribute of R

Py, Tepresents y;th projection function

c.’s represent constant values

x; # no. of attributes in R, and x; # z; for ¢ # j

For example: V' € C(1) and V = {v1,va, -+, 0, }

Ai’fl = Py,

dme AIR i pyk (V) = R(A'r T Uyinati
Aﬂ’?:c it €z : -
Am =Cz_y

A = v AL b1 = Czpy

...’A_m

—coian )

Vertical Composition of Rules: vmrules: Tn order to facili-
tate the top-down stepwise refinement technique, UPN also
allow for a vertical composition of rules. Vertical compositions
in UPN are used as a mechanism to establish relations between
one rule at a given level of abstraction and other rules at a
lower level of abstraction. As a result, rules form an abstraction
hierarchy. This abstraction facilitates the design of the model
and it is in line with the natural way a company policy is
defined: first with abstract and general rules, which are then
refined with a higher degree of detail.

One rule can be refined and replaced by a set of rules
representing more detailed specifications. This can be seen

Calling protocol

Subnet

Fig. 4. Example of a subnet and a calling protocol.

as a rule set where only part of its preconditions and postcon-
ditions are shown at the higher level of abstraction. Vertical
composition is performed in such a way that rule preconditions
and postconditions at a level of abstraction are preserved when
working at the next lower level.

In UPN terminology, a compound transition is refined and
replaced by a subnet, where incoming and outgoing arcs from
the transition are maintained in the resulting subnet.

Given a compound transition, {, (high-level abstraction
transition), and a level of abstraction 7 — 1, a vertical metarule
(called “vmrule™) vmzil is identified by the tuple (¢,, hm;),
where hm; is a hmrule that identifies a subnet, UPN’, which
refines ¢, at a lower level of abstraction i.

The refinement of a compound transition of an abstract net
produces a new UPN net which, in general, is the union of
both nets minus the refined compound transition. A subnet
being refined from a compound transition is formed with an
attached calling protocol which establishes the link from the
net at the abstract level with the subnet at the next lower
level. The compound transition is replaced by the subnet with
a calling net which contains one initiation transition (finic),
one waiting place (pwai:). and one returning transition (f.c).
In addition, pin; is the starting place of the subnet and p...; is
the ending place of it. One arc connecting fi,i; t0 Pinie in the
subnet and another arc connecting ppe; t0 t.o¢ in the subnet are
added to link the calling protocol to the subnet. The calling
protocol and the subnet are shown in Fig. 4.

It is also possible to explode a compound transition to
several rule sets. Let UPN; be a net representing specifications
at a high abstract level and let UPN, , ---, UPNy be the
subnets representing the rule sets hmso,, ---, hms, . from
(ta, o, , -+, hmgo ), that refine the compound transition
t, € 17. The new UPN net is defined as follows:

1) fai— P1 UIDQ,i U_[Dzﬂ UPC-dl], where PI, le,' s Pgn
denote the sets of places of UPNy, UPNy,, ---, UPNy,
respectively, and P,y denotes the set of places of the
UPN for the calling protocol.

2) T={N —{ta}}UT5, ---UT,, UTeay, where Ty, Ts,,
-+, Ty denote the sets of transitions of UPN;, UPNs ,
-+, UPNy respectively, and 7., denotes the set of
transitions of the UPN for the calling protocol.
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3) All the incoming and outgoing arcs are preserved, except
the ones related with transition £,:

I~(t,p) = I1 (t,p),Yp € P1,¥t € {Th — {ta}}
I~(t,p) = I3 (t,p),Vp € Py, ,Vt € T5,,1<i<n
I (tp) = - ca]l(t!p)!vp = Pca]l:Vt = Tcall

Similarly for I (¢,p) and I,(t,p).
In addition,

I (tinit, p) = Iy (ta.p),Vp € P
I (tree.p) = I (tasp), Vp € P
I (b pinn) = Ul (6o ) [t e Togl =i = )
I (ret, Dret;) = U{IS (¢, pret) | t € T, 1 <4 < m}
I=(t,p) =0.Yp € Pa, ¥Vt € T,
where I, (t,p) N 1] (ta,p),
and 15 (¢, pres) # 0
IT(t,p) =0,Vp € Po, ¥Vt € Tp,,

where I3 (t,p) NI (ta, p),
and I{[t.p,,et) # 10

4)
“l[([)) = J/[l(p) +M’21(p)Vp IS pl n pzz. 1 S ) S T
M(p) = Mi(p),Vp € {P1 — (P1 N Py,)
s (Pl mp,zn)}

M(p) = Mz, (p),Vp € {P, — (AN P,)},1<i<n

An example of the top-down refinement technique is the
refinement of the rule “Release of a work center in MRP 117
(Fig. 2), which is the compound transition ¢» in the abstract
scenario “Creation of a work center via MRP II” (Fig. 5).
During the refinement procedure a calling protocol is used,
and the refined UPN is shown in Fig. 6 with initial marking.
Preconditions and postconditions represented by transition #,
are preserved (arcs to/from EMwc, NPwe, and EPwc).

B. Synthesis Technique

It is necessary to synthesize related scenarios to build the
company wide policy, represented by one single net. There
have been some synthesis techniques presented in [29]-[31]
based on their application domain. In our work we take
advantage of the features of UPN, such as global places that
reflect the state of the databases involved. In addition, we
take advantage of standard modification procedures embedded
in the database management systems associated with each
application systems. The synthesis of UPN is achieved through
the use of places of global scope (see Section III-B).

Due to the representation of database states in UPN, every
scenario involves checkings, updates and retrievals in some of
the databases of the system. Therefore, connections from and
to global places, which represent database states, exist in every
UPN. These global places provide the connectivities between
all scenarios. For example, the scenario “Creation of a work
center via MRP II” (Fig. 5) and “Removal of a work center via
MRP II" (Fig. 7) are synthesized through the merging of the
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MRP O
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NPwc
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Pwe(weid=wcid#)
Pwe{wcid=wcid#,sts=w) CAPP
\ EPwc |dBS
p3 Pwe(weid=<weid#> sts=w) |
Pwe(weid=wcid#,sts=r)
Swe{weid=wcid#)
Swc(wcid=wcid#)
NSwe
\
Swolwcid=weid# sts=h ste=na) @—'
\ £Swe | SFC
Swe(wcid=wcid#,sts=h,ste=na) 3 dBS
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t1: create a new work center record in MRP II

t2: release the work center in MRP IT Database place notations

t3: release the work center in CAPP NX'we, EX'we
t4: release the work center in SFC N = does not exist
E = exists

‘X' = database: M -> MRPII,
P-> CAPP, §-> 8FC
wc = work center

pl: MRP II user starts the create procedure
p2: MRP II user starts the release procedure
p3: CAPP user starts the releas procedure
p4:SFC user starts the release procedure

Fig. 5. UPN graph of the scenario: “Creation of a work center via MRP II”
at an abstract level with initial marking.

work center global places of the databases in MRP II, CAPP,
and SFC. The synthesized net is shown in Fig. 8.
Alternatively, standard modification procedures (represent-
ing the default procedures maintained in database management
systems) can be used to synthesize subnets together. As
shown in Fig. 9, there are three procedural levels in a typical
database management system. The lowest level is the physical
procedural level which represents the actual database changes.
The procedures at this level are represented here by ins, del,
and upd. The second level is the modification procedural
level which represents the modification procedures with build-
in rules in the DBMS. The procedures at this level are
represented here by insert, delete, and update. The highest
level is the application procedural level which represents the
user-defined procedures (create, release, remove, etc.) based
on company policy and expert rules, that are the focal points
of this work. Note that the modification procedural level could
also be modeled using the same methodology and techniques
presented in this paper. In that case, instead of the global places
defined in Section III-B, these modification procedures would
become the links between application procedures which have
been developed in various scenarios. The reasoning is that
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Fig. 6. Partially refined UPN of the scenario “Creation of a work center via MRP II" with initial marking.

all application procedures call for the standard modification
procedures embedded in the DBMS in order to make changes
in the databases involved.

In order to avoid “re-inventing the wheel,” we decided not
to model the database management systems of the manufac-
turing application systems involved using UPN, but to define
the database states as global variables and to interface the
application procedures (company policy) through those global
places representing database states.

V. CONCLUSION

A formal structured representation schema for rule-based
systems has been developed and applied for the manage-
ment and control of information flow between manufacturing
applications. The representation schema, called UPN, is an

extension of the graphical and formal capabilities of colored
Petri nets to express and validate if-then rules. UPN are
capable of representing user specification rules as well as
database updates and retrievals, which is necessary for con-
trolling information flow within current and future distributed
database systems. Related rules can be aggregated at the same
level of abstraction and the relation between one rule at a
given level of abstraction and a set of aggregated rules at the
next lewer level of abstraction is also allowed. These facilities
provide a mechanism for stepwise refinements in modeling
and validation.

Future work includes the improvement of the representation
schema to deal with more complex conditions and its extension
to other application domains. Also, the joint use of UPN with
other Petri net based knowledge representation schemas used
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to model factory layout and performance [32], [33] can provide
an integrated framework for factory modeling and validation
of design specifications. On the other hand, the use of Petri
net structural features (incidence matrix, reachability tree and
invariants) and structural properties (boundedness, liveness,
mutual exclusiveness, etc.) that characterize completeness and
consistency of the rule-based system is also one of our lines
of interest.

APPENDIX

A. Creating New Work Centers in the System: Add via MRP 11

Work centers are originated in the system primarily through
the manufacturing resource planning (MRP II) module. MRP
IT users are responsible for establishing as well as phasing
out work centers in the system, and maintaining work center
data in MRP II. Because computer-aided process planning
(CAPP) requires detailed work center information for gener-
ating process plans, its work center files incorporate both the
work center information maintained in MRP II and other detail
technical information. Similarly, shop floor control (SFC) also
needs detailed work center information as in MRP II and
CAPP. Additional work center information in SFC includes
the state of a work center, to be able to schedule operations in
the work orders generated by MRP Il. Once again there is a
great deal of similarity between the sets of data maintained by

pl

tl1

t1: remove a work center record via MRP II

pl: MRP II user starts the removal procedure

UPN graph of the scenario: “Removal of a work center via MRP II” at an abstract level with initial marking.

each application system. A typical scenario of adding a work
center in the system is presented below:

1) MRP 1I user enters the basic data (WC ID, Description,
Department) to create the Work Center Record with Hold
(h) status in MRP II. The system then
checks WC ID does not exist in MRP II

2) MRP 1I user enters additional information (Capacity,
Resource Code, Rate Code, Dispatch Horizon, and Ef-
fectivity Start Date) through a modify transaction. MRP
1I user then releases the WC. Otherwise, if the additional
information was not entered, the system prompts for it
during releasing of the WC in MRP II.
checks WC ID exists in MRP 1I

WC with L status exists in MRP II

All the necessary data fields are filled

WC record does not exist in CAPP
updates WC record status from £ to release (r) in MRP 11
Skeletal WC Record automatically created in CAPP with
working (w) status

3) CAPP user enters additional information (Horse Power,
Speed Range, Feed Range, Work Envelope, Accuracy,
Tool Change Time, Feed Change Time, Speed Change
Time, Table Rotation Time, Tool Adjusting Time, and
Rapid Traverse Rate) through a modify transaction.
CAPP user then releases the WC. Otherwise, if the addi-
tional information was not entered, the system prompts
for it during releasing of the WC in CAPP.
checks WC ID exists in CAPP
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Fig. 8. UPN graph of the synthesized scenario: “Creation and removal of a work center via MRP II” at an abstract level with initial marking.

Application Procedure
(create, release, remove, ete.)

A

3 % % DBMS

Modification procedure
(insert, delete, update)
X

¥

-
Lty -t

Physical procedure
(ins, del,upd)

Fig. 9. Procedural levels in database management systems.

WC with w status exists in CAPP
All the necessary data fields are filled
WC record does not exist in SFC
updates WC record status from w to » in CAPP
WC Record automatically created in SFC with h status

4) SFC user releases the WC with the work center state as

4]

[5]

16]

(71

available (av) for being available
checks WC ID exists
WC with 7 status exists in MRP II and CAPP
WC with A status exists in SFC
updates WC record status from A to r in SFC, and state
changed from na to av in SFC and MRP 11
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