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Abstract: 

Plots and figures play an important role in the process of understanding a scientific publication, providing 

overviews of large amounts of data or ideas that are difficult to intuitively present using only the text. State 

of art in digital libraries, serving as gateways to knowledge encoded in scholarly writings, does not take full 

advantage of the graphical content of documents. Enabling machines to automatically unlock the meaning 

of scientific illustrations would allow immense improvements in the way scientists work and the 

knowledge is being processed. In this paper we present a novel solution for the initial problem of 

processing graphical content, obtaining figures from scholarly publications stored in PDF format. Our 

method relies on vector properties of documents and as such, does not introduce additional errors, 

characteristic for methods based on raster image processing. Emphasis has been placed on correctly 

processing documents in High Energy Physics. The described approach makes distinction between different 

classes of objects appearing in PDF documents and uses spatial clustering techniques to group objects into 

larger logical entities. A number of heuristics allow the rejection of incorrect figure candidates and the 

extraction of different types of metadata. 
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1 Introduction 
 

Notwithstanding the technological advances of large-scale digital libraries and novel technologies to 

package, store and exchange scientific information, scientists communication pattern has changed little in 

decades if not centuries. The key information of scientific articles is still packaged in a form of text and, for 

several scientific disciplines, in a form of figures. 

New semantic text-mining technologies are unlocking the information in scientific discourse and there exist 

some remarkable examples of attempts to extract figures from scientific publications (Kataria, On 

Utilization of Information Extracted From Graph Images in Digital Documents. 2008) but current attempts 

do not provide sufficient level of generality to deal with figures from High-Energy Physics (HEP) and cannot 

be applied in a digital library like INSPIRE, which is the main point of our interest. Publications being the 



main area of our interest tend to contain highly specific types of figures, which we understand as any type 

of graphical content illustrating the text and referenced from within of it. In particular they contain high 

volume of plots which are line-art images illustrating a dependency of a certain quality on a parameter. 

The graphical content of scholarly publications allows much more efficient access to the most important 

results presented in a publication (Hearst, et al. 2007) (Johnston 2011). The human brain perceives the 

graphical content much faster than reading an equivalent block of text. Presenting figures together with 

the publication summary, when displaying search results, would allow more accurate assessment of the 

article content and in turn lead to a better usage of researchers’ time. Enabling users to search for figures 

describing similar quantities or phenomena to a given one could become a very powerful tool for finding 

publications describing similar results. Combined with additional metadata, it could provide knowledge 

about evolution of certain measurement or idea over time. 

These and many more applications created an incentive to research possible ways integration of figures in 

INSPIRE. INSPIRE is a digital library for HEP (Holtkamp, et al. 2010), the application field of this work. It 

provides a large scale digital library service (1 Million records, 50'000 users), which is starting to explore 

new mechanisms of using figures in articles of the field to index, retrieve and present information (Praczyk, 

Nogueras-Iso and Dallmeier-Tiessen, et al. 2012) (Praczyk, Nogueras-Iso and Kaplun, et al. 2011). As a first 

step, direct access to graphical content before accessing the text of a publication can be provided.  

Secondly, a description of graphics (“blue-band plot”, “the yellow shape region”) could be used in addition 

to metadata and/or full-text queries to retrieve a piece of information. Finally, articles could be aggregated 

in clusters containing the same or similar plots, in a possible alternative automated answer to a standing 

issue in information management. 

The indispensable step to realise this vision is an automated, resilient and high-efficiency extraction of 

figures from scientific publications. In this paper, we present an approach that we have developed to 

address this challenge. The focus has been put on developing a general method allowing the extraction of 

data from documents stored in Portable Document Format (PDF). The results of the algorithm consist of 

metadata, raster images of a figure but also vector graphics , which allows easier further processing.  

The PDF format has been chosen as the input of the algorithm because it is a de facto standard in scientific 

communication. In the case of HEP, Mathematics and other exact sciences, the majority of publications are 

prepared using the Latex document formatting system and later compiled into a PDF file. The electronic 

versions of publications from outstanding scientific journals are also provided in PDF format. The internal 

structure of PDF files does not always reveal the location of graphics. In some cases images are included as 

external entities and easily distinguishable from the rest of documents content, but other times they are 

mixed with the rest of the content. Therefore, in order not to miss any figure, the low-level structure of a 

PDF must be analysed. The work described in this paper focuses on the area of High Energy Physics. 

However, with minor variations, described methods could be applicable in the case of a different area of 

knowledge. 

The rest of the paper is organised as follows. Section 2 presents the state of the art in the area of PDF 

document analysis and figure extraction. Section 3 describes every step of the extraction method in detail. 

Section 4 presents the results of the evaluation of the presented method on a test-bed of HEP articles. 

Finally, the paper ends with some conclusions and outlook on future work. 



2 Related Work 
Over years of development of Digital Libraries and document processing, researchers developed several 

methods of automatically extracting and processing graphics appearing in PDF documents. Based on 

properties of the processed content, these methods can be divided into two groups. The attempts of the 

first category deal with PDF documents in general, not making any assumptions about the content of 

encoded graphics or document type. The methods from the second group are more specific to figures from 

scientific publications. Our approach belongs to the second group. 

General tools include command line programs like pettifogs1 or web-based applications like pdftoword2. 

These solutions are useful in a general case of documents, but all suffer from the same difficulties when 

processing scientific publications: Graphics that are recognised by such tools have to be marked as graphics 

inside PDF documents. This is the case with raster graphics and some other internally stored types objects. 

In the case of scholarly documents, most graphics are constructed internally using PDF primitives and thus 

cannot be correctly processed by tools from the first group. Moreover, general tools do not have the 

necessary knowledge to produce metadata describing the extracted content. 

With respect to specific tools for scientific publications it must be noted first that important scientific 

publishers like Springer or Elsevier have created services to allow access to figures present in scientific 

publications: the improvement of SciVerse Science Direct site for searching images in the case of Elsevier3 

(Elsevier 2012); and the SpringerImages service in the case of Springer4 (Eichhorn 2011)These services 

allow searches triggered from a text box, where the user can introduce a description of the required 

content. It is also possible to browse images by categories such as types of graphics (Image, Table, Line art, 

Video and so on). The search engines are limited to searches based on figure captions. In this sense, there 

is little difference between the image search and text search implemented in a typical digital library. 

Most of existing works aiming at the retrieval and analysis of figures use the rasterised graphical 

representation of source documents as its basis. Browuer et al. (Browuer, et al. 2008) (Kataria, Browuer, et 

al. 2008) describe a method of detecting plots by means of wavelet analysis. In their work they focus on 

the extraction of data points from identified figures. In particular, they address the challenge of correctly 

identifying overlapping points of data in plots. This problem would not manifest itself often in the case of 

vector graphics, which is the scenario proposed in our extraction method. Vector graphics preserve much 

more information about the documents content than simple values of pixel colours. In particular, vector 

graphics describe overlapping objects separately. Raster methods are also much more prone to additional 

errors being introduced during the recognition/extraction phase. The methods described in this paper 

could be used along with the method of Kataria (Kataria, On Utilization of Information Extracted From 

Graph Images in Digital Documents. 2008) for the case of documents being output of a digitisation process. 

Liu et al. (Liu. Y, et al. 2007) present a page box-cutting algorithm for the extraction of tables from PDF 

documents. Their approach is not directly applicable but their ideas of geometrical clustering of PDF 

primitives are similar to the ones proposed in our work. However, our experiments with their 

                                                      
1http://sourceforge.net/projects/pdf-images/ (last access: 17.12.2012) 

2http://www.pdftoword.com/ (last access: 17.12.2012) 

3http://www.sciencedirect.com/ (last access: 17.12.2012) 

4http://www.springerimages.com/ (last access: 17.12.2012) 



implementation and HEP publications have shown that the heuristics used in their work cannot be directly 

applied to the case of HEP, showing the need for an adapted approach, even in the case of tables. 

A different category of work, not directly related to graphics extraction, but being useful when designing 

algorithms, has been devoted to the analysis of graph usage in scientific publications. The results 

presented by Cleveland et al. (Cleveland 1984) describe a more general case than publications of High 

Energy Physics. Even if the data presented in the work came from scientific publications before 1984, 

included observations, as for example typical sizes of graphs, were useful with respect to general 

properties of figures and were taken into account when adjusting parameters of the presented algorithm. 

Finally, there exist attempts to extract layout information from PDF documents. The knowledge of page 

layout is useful to distinguish completely independent parts of the content. The approach of layout and 

content extraction presented by Chao et al. (Chao and Fan 2004) is the closest to the one we propose in 

this paper. The difference lies in the fact that we are focusing on the extraction of plots and figures from 

scientific documents, which usually follow stricter conventions. Therefore, we can make more assumptions 

about their content and extract more precise data. For instance, our method emphasises the role of 

detected captions and permits them to modify the way in which graphics are treated. We also extract 

portions of information that are difficult to be extracted using more general methods, such as captions of 

figures. 

3 The Method 
PDF files have a complex internal structure allowing to embed various external objects and to include 

various types of metadata. However, the central part of every PDF file consists of a visual description of the 

subsequent pages. The imaging model of PDF uses a language based on a subset of the PostScript 

language. PostScript is a complete programming language containing instructions (called also operators) 

which allow to render text and images on a virtual canvas. The canvas can correspond to a computer 

screen or to another, possibly virtual, device used to visualise the file.  The subset of PostScript, which was 

used to describe content of PDFs had been stripped from all the flow control operations (like loops and 

conditional executions), which makes it much simpler to interpret than the original PostScript. Additionally, 

the state of the renderer is not preserved between subsequent pages, making their interpretation 

independent.  

In order to avoid many technical details, which are irrelevant in this context, we will consider a PDF 

document as a sequence of operators (also called the content stream). Every operator can trigger a 

modification of the graphical state of the PDF interpreter, which might be drawing a graphical primitive, 

rendering an external attached object, or modifying a position of the graphical pointer5 or a transformation 

matrix6. The outcome of an atomic operation encoded in the content stream depends not only on 

parameters of the operation, but also on the way previous operators modified the state of the interpreter. 

Such a design makes a PDF file easy to render but not necessarily easy to analyse. 

                                                      
5
 At every moment of the execution of a PostScript program, the interpreter maintains a number of variables. Some of them 

encode current positions within the rendering canvas. Such positions are used to locate the subsequent character or to define 
the starting point of the subsequent graphical primitive. 
6
 Transformation matrices are encoded inside the interpreters’ state. If an operator requires arguments indicating coordinates, 

these matrices are used to translate the provided coordinates to the coordinate system of the canvas.  



Figure 1 provides an overview of the proposed extraction method. At the very first stage, the document is 

preprocessed and operators are extracted (see Section 3.1). Later, graphical7 and textual8 operators are 

clustered using different criteria (see Sections 3.4 and 3.5) and the first round of heuristics rejects regions 

which cannot be considered figures. In the next phase, the clusters of graphical operators are merged with 

text operators representing fragments of text to be included inside a figure (see Section 3.4). The second 

round of heuristics detects clusters which are unlikely to be figures. Text areas detected by the means of 

clustering text operations are searched for possible figure captions (see Section 3.5). Captions are matched 

with corresponding figure candidates and geometrical properties of captions are used to refine the 

detected graphics. The last step generates data in a format convenient for further processing (see Section 

3.6). 

 

 

Figure 1: Overview of the figure extraction method 

Additionally, it must be noted that another important preprocessing step of the method consists of the 

layout detection. Section 3.7 discusses an algorithm segmenting pages into layout elements called page 

divisions. This considerably improves the accuracy of the extraction method because elements from 

different page divisions can no longer be considered belonging to the same cluster (and subsequently 

figure). This allows to apply the method separately to different columns of a document page. 

3.1 Preprocessing of Operators 

The proposed algorithm considers only certain properties of a PDF operator rather than trying to 

completely understand its effect. Considered properties consist of the operators’ type, the region of the 

page where the operator produces output and, in the case of textual operations, the string representation 

of the result. For simplicity, we suppress the notion of coordinate system transformation, inherent for the 

PDF rendering, and describe all operators in a single coordinate system of a virtual 2-dimensional canvas 

where operations take effect. Transformation operators9 are assigned an empty operation region as they 

do not modify the result directly but affect subsequent operations. 

                                                      
7
 Graphical operators are those which trigger the rendering of a graphical primitive. 

8
 Textual operations are the PDF instructions which cause the rendering of the text. Textual operations receive the string 

representation of the desired text and use the current font which is saved in the interpreters’ state. 
9
 Operations which do not produce any visible output, but solely modify the interpreters’ state. 



In our implementation, an existing PDF rendering library has been used to determine boundaries of 

operators. Rather than trying to understand all possible types of operators, we check the area of the 

canvas that has been affected by an operation. If the area is empty, we consider the operation to be a 

transformation. If there exists a non-empty area that has been changed, we check if the operator belongs 

to a maintained list of textual operators. This list is created based on the PDF specification. If so, the 

operators argument list is scanned searching for a string and the operation is considered to be textual.  An 

operation that is neither a transformation nor a textual operation is considered to be graphical. It might 

happen that text is generated using a graphical operator. However, such a situation is unusual. In the case 

of operators triggering rendering of other operators, which is the case for example when rendering text 

using type-3 fonts, we consider only the top-level operation. 

In most cases, separate operations are not equivalent to logical entities considered by a human reader 

(such as a paragraph, a figure, a heading and so on… ). Graphical operators are usually responsible for 

displaying lines or curve segments while humans think in terms of illustrations, data lines and so on. 

Similarly, in the case of text, operators do not have to represent complete or separate words or 

paragraphs. They usually render parts of words and sometimes parts of more than one word. 

The only assumption we make about the relation between operators and logical entities is that a single 

operator does not trigger rendering of elements from different detected entities (figures, captions). This is 

usually true because logical entities tend to be separated by a modification of the context (There is a 

distance between text paragraphs or an empty space between curves). 

3.2 Clustering of Graphical Operators 

3.2.1 The Clustering Algorithm 

The representation of a document as a stream of rectangles allows the calculation of more abstract 

elements of the document. In our model, every logical entity of the document is equivalent to a set of 

operators. The set of all operators of the document is divided into disjoint subsets in the process called 

clustering. Operators are decided to belong to the same cluster based on the position of their boundaries. 

The criteria for the clustering is based on a simple but important observation: operations forming a logical 

entity have boundaries lying close to each other. Groups of operations forming different entities are 

separated by empty spaces. 



 

Algorithm 1: The clustering algorithm 

The clustering of textual operations yields text paragraphs and smaller objects like section headings. 

However, in the case of graphical operations, we can obtain consistent parts of images, but usually not 

complete figures yet. Outcomes of the clustering are utilised during the process of figures detection. 

Algorithm 1 shows the pseudo-code of the clustering algorithm. The input of the algorithm consists of a set 

of preprocessed operators annotated with their affected area. The output is a division of the input set into 

disjoint clusters. Every cluster is assigned a boundary equal to the smallest rectangle containing boundaries 

of all included operations. 

In the first stage of the algorithm (lines 6-20), we organise all input operations in a data structure of forest 

of trees. Every tree describes a separate cluster of operations. The second stage (lines 21-29) converts the 

results (clusters) into a more suitable format. 

The clustering of operations is based on the relation of their rectangles being close to each other. 

Definition 1 formalises the notion of being close, making it useful for the algorithm. 

Definition 1: Two rectangles are considered to be located close to each other if they are intersecting after 

expanding their boundaries in every direction by a margin.  

The value by which rectangles should be extended is a parameter of the algorithm and might be different 

in various situations. In order to detect if rectangles are close to each other, we needed a data structure 

allowing to store a set of rectangles. This data structure was required to allow retrieving all stored 

rectangles that intersect a given one. 

1: Input: OperationSet input_operations {Set of operators of the same type} 

2: Output: Map<Rectangle, OperationSet> {Spatial clusters of operators} 

3: IntervalTree tx ← IntervalTree() 
4: IntervalTree ty ← IntervalTree() 
5: Map<Operation, Operation> parent ← Map() 
6: for all Operation op ∈ input_operations do 
7:     Rectangle boundary ← extendByMargins(op.boundary) 
8:     repeat 

9:         OperationSet int_opsx ← tx.getIntersectingOps(boundary) 
10:         OperationSet int_opsy ← ty.getIntersectingOps(boundary) 
11:         OperationSet int_ops ← int_opsx ∩ int_opsy 
12:         for all Operation int_op ∈ int_ops do 

13:             Rectangle bd ← tx[int_op] × ty[int_op] 
14:             boundary ← smallestEnclosing(bd, boundary) 
15:             Parent[int_op] ← op 

16:             tx.remove(int_op); ty.remove(int_op) 
17:         end for 

18:     until int_ops = ∅ 
19:     tx.add(boundary, op); ty.add(boundary, op) 
20: end for 

21: Map<Rectangle, OperationSet> results ← Map() 
22: for all Operation op ∈ input_operations do 
23:     Operation root_ob ← getRoot(parent, op) 
24:     Rectangle rec ← tx[int_ob] × ty[int_ob] 
25:     if not results.has_key(rec) then 

26:         results[rec] ← List() 
27:     end if 

28:     results[rec].add(op) 
29: end for 

30: return results 
 



We have constructed the necessary structure using an important observation about the operation result 

areas. In our model all bounding rectangles have their edges parallel to the edges of the reference canvas 

on which the output of the operators is rendered. This allowed us to reduce our problem from the case of 

2-dimensional rectangles to the case of 1-dimensional intervals. We can assume that edges of the 

rectangular canvas define the coordinates system. It is easy to prove that two rectangles of edges parallel 

to the axis of the coordinates system intersect only if both their projections in the directions of axis 

intersect. The projection of a rectangle into an axis is always an interval. 

The observation made above has allowed us to build the required 2-dimensional data structure by 

remembering 2 one-dimensional data structures that allow to remember a number of intervals and for a 

given interval return the set of intersecting ones. Such a one-dimensional data structure has been provided 

by interval-trees (Edelsbrunner and Maurer 1981). Every interval inside the tree has an arbitrary object 

assigned to it, which in this case is a representation of the PDF operator. This object can be treated as an 

identifier of the interval. The data structure also implements a dictionary interface, mapping objects to 

actual intervals. 

At the beginning, the algorithm initialises two empty interval trees representing projections on X and Y axis 

respectively. Those trees store values about projections of the biggest so-far calculated areas rather than 

about particular operators. Each cluster is represented by the most recently discovered operation 

belonging to it. 

During the algorithm execution, each operator from the input set is considered only once. The order of 

processing is not important. The processing of a single operator proceeds as follows (the interior of the 

outermost “for all” loop of the algorithm).  

1. Firstly, the boundary of the operation is extended by the width of margins. The spatial data 

structure described earlier is utilised to retrieve boundaries of all already detected clusters (lines 9-

10)  

2. The forest of trees representing clusters is updated. The currently processed operation is added 

without a parent. Roots of all trees representing intersecting clusters (retrieved in previous step) 

are attached as children of the new operation.  

3. The boundary of the processed operation is extended to become the smallest rectangle containing 

all boundaries of intersecting clusters and the original boundary. Finally, all intersecting clusters are 

removed from the spatial data structure. 

4. Lines 9-17 of the algorithm are repeated as long as there exist areas intersecting the current 

boundary. In some special cases, more than one iteration may be necessary. 

5. Finally, the calculated boundary is inserted into the spatial data structure as a boundary of a new 

cluster. The currently processed operation is designed to represent the cluster and so, is 

remembered as a representant of the cluster.  

 

After processing all available operations, the post-processing phase begins. All the trees are transformed 

into lists. The resulting data structure is a dictionary having boundaries of detected clusters as keys and 

lists of belonging operations as values. This is achieved in lines 21-29. During the process of retrieving the 

cluster to which a given operation belongs, we use a technique called path compression, known from the 

Find&Union data structure (Cormen, Leiserson and Rivest 1990). 



3.2.2 Filtering of Clusters 

Graphical areas detected by a simple clustering usually do not directly correspond to figures. The main 

reason for this is that figures may contain not only graphics, but also portions of text. Moreover, not all 

graphics present in the document must be part of a figure. For instance, common graphical elements not 

belonging to a figure include logos of institutions and text separators like lines and boxes; various parts of 

mathematical formulas usually include graphical operations; and in the case of slides from presentations, 

the graphical layout should not be considered part of a figure. 

The above shows that the clustering algorithm described earlier is not sufficient for the purpose of figures 

detection and it yields a results set wider than expected. In order to take into account the aforementioned 

characteristics, precalculated graphical areas are subject to further refinement. This part of the processing 

is highly domain-dependent as it is based on properties of scientific publications in a particular domain, in 

this case publications of HEP. In the course of the refinement process, previously computed clusters can be 

completely discarded, extended with new elements, or some of their parts might be removed. In this 

subsection we discuss the heuristics applied for rejecting and splitting clusters of graphical operators. 

There are two main reasons for rejecting a cluster. The first of them is a size being too small compared to a 

page size. The second is the figure candidate having its aspect ratio outside a desired interval of values. 

The first heuristic is designed to remove small graphical elements appearing for example inside 

mathematical formulas, but also small logos and other decorations. The second one discards text 

separators and different parts of mathematical equations, such as a line separating numerator from a 

denominator inside a fraction. The thresholds used for filtering are provided as configurable properties of 

the algorithm and their values are assigned experimentally in a way maximising the accuracy of figures 

detection. 

Additionally, the analysis of the order of operations forming the content stream of a PDF document may 

help to split clusters that were incorrectly joined by Algorithm 1. Parts of the stream corresponding to 

logical parts of the document usually form a consistent subsequence. This observation allows to construct 

a method of splitting elements incorrectly clustered together. We can assign content streams not only to 

entire PDF documents or pages, but also to every cluster of operations. The clustering algorithm presented 

in Algorithm 1 returns a set of areas with a list of operations assigned to each of them. The content stream 

of a cluster consists of all operations from such a set ordered in the same manner as in the original content 

stream of the PDF document. The usage of the original content stream allows us to define a distance in the 

content stream as follows: 

Definition 2  If o
1
 and o

2
 are two operations appearing in the content stream of the PDF document, by the 

distance between these operations we understand the number of textual and graphical operations 

appearing after the first of them and before the second of them.  

In order to detect situations when a figure candidate contains unnecessary parts, the content stream of a 

figure candidate is read from the first to the last operation. For every two subsequent operations, the 

distance between them in the sense of the original content stream is calculated. If the value is larger than a 

given threshold, the content stream is split into two parts which become separate figure candidates. For 

both candidates, a new boundary is calculated. 

This heuristic is especially important in the case of less formal publications such as slides from 

presentations at conferences. Presentation slides tend to have a certain amount of graphics appearing on 



every page and not carrying any meaning. Simple geometrical clustering would connect elements of page 

style with all the rest of the document content. Measuring the distance in the content stream and defining 

a threshold on the distance facilitates the distinction between the layout and the rest of the page. This 

technique might be also useful in order to automatically extract the template used for a presentation, 

although this transcends the scope of this publication. 

3.3 Clustering of Textual Operators 

The same algorithm that is applied to cluster graphical elements can be used to cluster parts of text. 

Detecting larger logically consistent parts of text is important because they should be treated as single 

entities during subsequent processing. This comprises inclusion inside a figure candidate (captions of axes, 

parts of a legend etc...), classification of a text paragraph as a figure caption and so on. 

3.4 Inclusion of Text Parts 

The next step in figures extraction involves the inclusion of lost text parts inside figure candidates. At the 

stage of operations clustering, only the operations of the same type (graphical or textual) were considered. 

The results of those initial steps become subsequently the input to the clustering algorithm that will detect 

relations between previously detected entities. By doing this, we move one level farther in the process of 

abstracting from operations. Initially we start from basic meaningless operations. Later we detect parts of 

graphics and text and finally we are able to see the relations between both. 

Not all clusters detected at this stage are interesting because some clusters might consists uniquely of text 

areas. Only those results that include at least one graphical cluster may be subsequently considered figure 

candidates. 

Another round of heuristics allows to mark unnecessary intermediate results as deleted. Applied methods 

are very similar to those described in Section 3.2.2, only thresholds deciding on the rejections must change 

because we operate on geometrically much larger entities. Also the way of application is different - 

candidates rejected at this stage can be later restored to the status of a figure. Instead of permanently 

removing, heuristics of this stage only mark figure candidates as rejected. This happens in the case of the 

candidates having incorrect aspect ratio, incorrect sizes or consisting only of horizontal lines (which is 

usually the case with mathematical formulas but also tables). 

In addition to using the aforementioned heuristics, having clusters consisting of a mixture of textual and 

graphical operations allows to apply new ones. During the next phase, we analyse the type of operations 

rather than their relative location. In some cases, steps described earlier might detect objects that should 

not be considered a figure, such as text surrounded by a frame. This situation can be recognised by the 

calculation of a ratio between the number of graphical and textual operations in the content stream of a 

figure candidate. In our approach we have defined a threshold which indicates which figure candidates 

should be rejected because they contain too few graphics. This allows to remove for instance blocks of text 

decorated with graphics for aesthetic reasons. The ratio between numbers of graphical and textual 

operations is smaller in the case of tables than in the case of figures so extending the heuristic with an 

additional threshold could improve the table/figure distinction. Another heuristic analyses ratio between 

the total area of graphical operations and the area of the entire figure candidate. 

Subsequently, we mark as deleted figure candidates containing horizontal lines as the only graphical 

operations. These candidates describe tables or mathematical formulas which have survived previous steps 

of the algorithm. Tables can be reverted to the status of figure candidates in later stages of processing. 



Figure candidates that survive all the phases of filtering are finally considered to be figures. Figure 2 shows 

a fragment of a publication page with indicated text areas and final figure candidates detected by the 

algorithm. 

 

 

Figure 2: A fragment of the PDF page with boxes around every detected text area and each figure candidate. Dashed rectangles indicate 
figure candidates. Solid rectangles indicate text areas. 

3.5 Detection and Matching of Captions 

The input of the part of the algorithm responsible for detecting figure captions consists of previously 

determined figures and all text clusters. The observation of scientific publications shows that typically 

captions of figures start with a figure identifier (for instance see the grammar for figure captions proposed 

by Bathia et al. (Bhatia, Lahiri and Mitra 2009)). 

The identifier usually starts with a word describing a figure type and is followed by a number or some other 

unique identifier. In the case of more complex documents, the figure number might have a hierarchical 

structure reflecting for example the chapter number. The set of possible figure types is very limited. In the 

case of HEP publications, the most usual combinations include words “Figure”, “Plot” and different 

variations of their spelling and abbreviating. 

During the first step of the caption detection, all text clusters from the publication page are tested for the 

possibility of being a caption. This consists of matching the beginning of the text contained in a textual 

cluster with a regular expression determining what is a figure caption. The role of the regular expression is 

to elect strings starting with one of the predefined words, followed by an identifier or beginning of a 

sentence. The identifier is subsequently extracted and included in the metadata of a caption. The caption 

detection has to be designed to reject paragraphs of the type “Figure 1 presents results of (...)”. In order to 

achieve this, we reject the possibility of having any lower case text after the figure identifier. 

Having the set of all the captions, we start searching for corresponding figures. All previous steps of the 

algorithm take into account the division of a page into text columns (see Section 3.7 about the layout 

detection). When matching captions with figure candidates, we do not take into account the page layout. 



Matching between figure candidates and captions happens at every document page separately. We 

consider every detected caption once, starting with those located at the top of the page and moving 

downwards towards the end. For every caption we search figure candidates lying nearby. First we search 

above the caption and in the case of failure, we move below the caption. We take into account all figure 

candidates, including those rejected by heuristics. 

In the case of finding multiple figure candidates corresponding to a caption, we merge them into a single 

figure, treating previous candidates as subfigures of a larger figure. We also include small portions of text 

and graphics previously rejected from figure candidates which lie between figure and caption and between 

different parts of a figure. These parts of text usually contain identifiers of the subfigures. The amount of 

unclustered content that can be included in a figure is a parameter of the extraction algorithm and is 

expressed as a percentage of the height of the document page. 

It might happen that captions are located in a completely different location, but this case is rare and tends 

to appear in older publications. The distance from the figure is calculated based on the page geometry. The 

captions should not be too distant from the figure. 

3.6 Generation of the Output 

The choice of the format in which data should be saved at the output of the extraction process should take 

into account further requirements. 

The most obvious use case of displaying figures to end users in response to text-based search queries does 

not yield very sophisticated constraints. A simple raster graphics annotated with captions and possibly 

some extracted portions of metadata would be sufficient. Unfortunately, the process of generating raster 

representations of figures might lose many important pieces of information that could be used in the 

future for an automatic analysis. 

In order to store as much data as possible, apart from storing the extracted figures in a raster format (e.g., 

PNG), we also decided to preserve their original vector character. Vector graphics formats, similarly to PDF 

documents, contain information about graphical primitives. Primitives can be organised in larger logical 

entities. Sometimes rendering of different primitives leads to a modification of the same pixel of resulting 

image. Such a situation might happen for example when circles are used to draw data points lying nearby 

on the same plot. In order to avoid such issues, we convert figures into Scalable Vector Graphics (Ferraiolo 

2001) format. 

On the implementation level, the extraction of vector representation of a figure proceeds in a manner 

similar to regular rendering of a PDF document. The interpreter preserves the same elements of the state 

and allows their modification by transformation operations. A virtual canvas is created for every detected 

figure. The content stream of the document is processed and all the transformation operations are 

executed modifying the interpreters state. The textual and graphical operators are also interpreted, but 

they affect only the appropriate canvas of the figure to which the operation belongs. If a particular 

operation does not belong to any figure, no canvas is affected. The behaviour of graphical canvases used 

during the SVG generation is different from the case of raster rendering. Instead of creating graphical 

output, every operation is transformed into a corresponding primitive and saved within a SVG file. 

The PDF format was designed in such a manner that the number of external dependencies of a file is 

minimised. This design decision led to the inclusion of the majority of fonts in the document itself. It would 



be possible to embed font glyphs in the SVG file and use them in order to render strings. However, for the 

sake of simplicity, we decided to omit font definitions in the SVG output. 

A text representation is extracted from every text operation and the operation is replaced by a SVG text 

primitive with a standard font value. This simplification affects how the output looks like, but the amount 

of formatting information that is lost is minimal. Moreover, this does not pose a problem as vector 

representations are intended to be used during automatic analysis of figures rather than for displaying 

purposes. A possible extension of the presented method could involve embedding complete information 

about used glyphs. 

Finally, the generation of the output is completed with some metadata elements. An exhaustive 

categorisation of the metadata that can be compiled for figures could be the customisation of the one 

proposed by Liu et al (Liu. Y, et al. 2007) for table metadata. In the case of figures, the following categories 

could be distinguished: 1) environment/geography metadata (information of the document where the 

figure is located); 2) affiliated metadata (e.g., captions, references, or footnotes); 3) layout metadata 

(information about the original visualisation of the figure); 4) content data; 5) and figure type metadata. 

For the moment, we compile only environment/geography metadata and affiliated metadata. 

The geography/environment metadata consists of the document title, the document authors, the 

document date (creation and publication), and the exact location of a figure inside a publication (page and 

boundary). Most of these elements are provided by simply making a reference to the original publication in 

the Inspire repository. The affiliated metadata consists of the text caption and the exact location of the 

caption in the publication (page and boundary). In the future, metadata from other categories will be 

annotated for each figure. 

3.7 Detection of the Page Layout 

 

Figure 3: Sample page layouts that might appear in a scientific publication. The black colour indicates areas where content is present. 

In this section we discuss how to detect the page layout, an issue which has been omitted in the main 

description of the extraction algorithm, but which is essential for an efficient detection of figures. Figure 3 

depicts several possibilities of organising content on the page. As mentioned in previous sections, the 

method of clustering operations based on their geometrical position may fail in the case of documents 

having a complex page layout. The content appearing in different columns should never be considered 

belonging to the same figure. This cannot be assured without enforcing additional constrains during the 

clustering phase. 



In order to address this difficulty, we enhanced the figure extractor with a preprocessing phase of 

detecting the page layout. Being able to identify how the document page is divided into columns, enables 

us to execute the clustering within every column separately. It is intuitively obvious, what can be 

understood as a page layout, although in order to provide a method of calculating such, we need a more 

formal definition, which we provide below. 

By the layout of a page, we understand a particular division of a page into areas called columns. Each area 

is a sum of disjoint rectangles. The division of a page into areas must satisfy a set of conditions summarised 

in Definition 3. 

Definition 3: Let P be a rectangle representing the page. The set D containing subareas of a page is called a 

page division if and only if 

 

 

 

 

 

Every element of a division is called a page area.  

In order to be considered a page layout, borders of areas from the division must not intersect the content 

of the page. Definition 3 does not guarantee that the layout is unique. A single page might be assigned 

different divisions satisfying the definition. Additionally, not all valid page layouts are interesting from the 

point of view of figures detection. The segmentation algorithm calculates one of such divisions, imposing 

additional constraints on the detected areas. The layout-calculation procedure utilises the notion of 

separators, introduced by Definition 4.  

Definition 4: A vertical (or horizontal) line inside a page or on its borders is called a separator if Its’ 

horizontal (vertical) distance from the page content is larger than a given constant value.  

The algorithm consists of two stages. First, the vertical separators of a sufficient length are detected and 

used to divide the page into disjoint rectangular areas. Each area is delimited by two vertical lines each of 

which forms a consistent interval inside of one of the detected vertical separators. At this stage, horizontal 

separators are completely ignored. Figure 4 shows a fragment of a publication page processed by the first 

stage of the layout-detection. The upper horizontal edge of one of the areas lies too close too close to two 

text lines. With the constant of the Definition 4 chosen to be sufficiently large, this edge would not be a 

horizontal separator and thus the generated division of the page would require additional processing to 

become a valid page layout. The second stage of the algorithm transforms the previously detected 

rectangles into a valid page layout by splitting rectangles into smaller parts and by joining appropriate 

rectangles to form a single area. 



 

Figure 4: Example of intermediate layout-detection results requiring the refinement 

Algorithm 2 shows the pseudo-code of the detection of vertical separators. The input of the algorithm 

consists of the image of the publication page. The output is a list of vertical separators aggregated by their 

x-coordinates. Every element of this list consists of two elements: an integer indicating the x-coordinate 

and the list of y-coordinates describing the separators. The first element of this list indicates the y-

coordinate of the beginning of the first separator. The second element is the y-coordinate of the end of the 

same separator. The third and fourth elements describe the second separator and the same mechanism is 

used for the remaining separators (if they exist).   

 The algorithm proceeds according to the sweeping principle (Cormen, Leiserson and Rivest 1990) known 

from the computational geometry. The algorithm reads the publication page starting from the left. For 

every x-coordinate value, a set of corresponding vertical separators is detected (lines 9 – 18). Vertical 

separators are searched as consistent sequences of blank points. A point is considered blank if all the 

points in its horizontal surrounding of the radius defined by the constant from Definition 5 are of the 

background colour. Not all blank vertical lines can be considered separators. Short empty spaces usually 

delimit lines of text or different small units of the content. In line 11 we test detected vertical separators 

for being long enough.  

If a separator has been detected in a particular column of a publication page, the adjacent columns also 

tend to contain similar separators. Lines 19-31 of the algorithm are responsible for electing the longest 

candidate among the adjacent columns of the page. The maximisation is performed across a set of 

adjacent columns for which at least one separator exists. 



 

Algorithm 2: Detecting vertical separators 

The detected separators are used to create the preliminary division of the page (Similar to the one from 

the example of Figure 44). Similarly to the previous step, separators are considered one by one in the order 

of increasing x coordinate. At every moment of the execution, the algorithm maintains a division of the 

page into rectangles. This division corresponds only to the already detected vertical separators. Updating 

the previously considered division is facilitated by processing separators in a particular well-defined order. 

Before presenting the final outcome, the algorithm must refine the previously-calculated division. This 

happens in the second phase of the execution. All the horizontal borders of the division are then moved 

along adjacent vertical separators until they become horizontal separators in the sense of Definition 4. 

Typically, moving the horizontal borders result in dividing already existing rectangles into smaller ones. If 

such a situation happens, both newly created parts are assigned to different page layout areas. Sometimes 

when moving separators is not possible, different areas are combined together, forming a larger one. 

4 Tuning and Testing 
The extraction algorithm described here has been implemented in Java and tested on a random set of 

scientific articles coming from the Inspire repository. The testing procedure has been used to evaluate the 

quality of the method, but also allowed to tweak the parameters of the algorithm in order to maximise the 

outcomes. 

 
1: Input: the page image 
2: Output: vertical separators of the input page 
3: List<Pair<int, List<int>> separators ← ∅ 
4: int max_weight ← 0;  
5: boolean maximizing ← false 
6: for all x ∈ {minx … maxx} do 
7:     emptyb ← 0, current_eval ← 0 
8:     empty_areas ← List() 
9:     for all y ∈ {0 … page_height} do 
10:         if point at (x, y) is not blank then 

11:             if y – emptyb – 1 > heightmin then 

12:                 empty_areas.append(emptyb) 
13:                 empty_areas.append(y = page_height? y : y-1) 
14:                 current_eval ← current_eval + y - emptyb 
15:             end if 

16:             emptyb ← y + 1 
17:         end if 

18:     end for 

{We have already processed the entire column. Now we are comparing with adjacent 

already processed columns}  

19:     if max_weight < current_eval then 

20:         max_weight ← current_eval 
21:         max_separators ← empty_areas 
22:         maxx ←  x  
23:     end if 

24:     if maximising then 
25:         if empty_areas = ∅ then 
26:              separators.add(<maxx, max_separators>) 
27:              maximising ← false, max_weight ← 0 
28:         end if 

29:     else 

30:         maximising ← (empty_areas ≠ ∅) 
31:     end if 

32: end for 

33: return separators 



4.1 Preparation of the testing set 

In order to prepare the testing set, we randomly selected 207 documents stored in INSPIRE. In total, these 

documents consisted of 3728 pages which contained 1697 figures altogether. 

The records have been selected according to a uniform probability distribution across the entire record 

space. This way, we have created a collection that is representative for the entire INSPIRE including 

historical entries. 

Currently, INSPIRE consists of: 1,140 records describing publications written before 1950; 4,695 between 

1950 and 1960; 32,379 between 1960 and 1970; 108,525 between 1970 and 1980; 167,240 between 1980 

and 1990; 251,133 between 1990 and 2000; and 333,864 in the first decade of XXIst century. In total, up to 

July 2012, INSPIRE manages 952,026 records. It can be seen that the rate of growth has increased with 

time and most of INSPIRE documents come from the last decade. 

The results on such a testing set should accurately estimate the efficiency of extraction for existing 

documents but not necessarily for new documents, being ingested into INSPIRE. This is because INSPIRE 

contains entries describing old articles which were created using obsolete technologies or scanned and 

encoded in PDF. The extraction algorithm is optimised for born-digital objects. In order to test the 

hypothesis that the extractors provides better results for newer papers, the testing set has been split into 

several subsets. The first set consists of publications published before 1980. The rest of the testing set has 

been split into subsets corresponding to decades of publication. 

In order to simplify the counting of correct figure detections and to provide a more reliable execution and 

measurement environment, every testing document has been split into a number of PDF documents 

consisting of a single page. Subsequently, every single page document has been manually annotated with 

the number of figures appearing inside. 

4.2 Execution of the Tests 

The efficient execution of the testing was possible thanks to a special script executing the plots extractor 

on every single page separately and then computing the total number of successes and failures. The script 

allows the execution of tests in a distributed heterogeneous environment and allows dynamic connection 

and disconnection of computing nodes. In the case of a software failure, the extraction request is 

resubmitted to a different computation node, allowing to avoid problems related to a worker node 

configuration rather than to the algorithm implementation itself. 

During the preparation of the testing set, we manually annotated all the expected extraction results. 

Subsequently, the script compared these metadata with the output of the extractor. Using aggregated 

numbers from all extracted pages allowed us to calculate efficiency measures of the extraction algorithm. 

As quality measures, we used recall and precision (Baeza-Yates and Ribeiro-Neto 1999). Their definitions 

are included in the following equations: 
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At every place where we needed a single comparable quality measure rather than two semi-independent 

numbers, we have used a harmonic average of the precision and the recall (Baeza-Yates and Ribeiro-Neto 

1999).  
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Table 1 summarises the results obtained during the test execution for every subset of our testing set. 

Figure 5 shows the dependency of recall and precision on the time of publication. The extractor 

parameters used in this test execution were chosen based on intuition and small number of manually 

triggered trials. In the next section we describe an automatic tuning procedure we have used to find the 

most optimal algorithm arguments. 

Table 1: Results of the test execution 

 -1980 1980-90 1990-2000 2000-10 2010-12 

Number of existent figures 114 60 170 783 570 

Number of correctly detected figures 59 53 164 703 489 

Number of incorrectly detected figures 26 78 65 40 73 

Total number of pages 85 136 760 1919 828 

Number of correctly processed pages 20 44 712 1816 743 

 

 

Figure 5: Recall and Precision as functions of decade of the date of the publication. 

It can be seen that, as expected, the efficiency increases with the increasing time of publication. A total 

recall and precision for all samples since 1990, which constitutes a majority of the INSPIRE corpus, were 

both 88%. 

Precision and recall based on the correctly detected figures do not give a full image of the algorithm 

efficiency because the extraction has been executed on a number of pages not containing any figures. The 

correctly extracted pages not having any figures do not appear in the recall and precision statistics because 

in their case the expected and detected number of figures are both equal to 0. 



Besides recall and precision, Figure 5 depicts also the fraction of pages which have been extracted 

correctly. Taking into account the samples since 1990, 3,271 pages out of 3,507 have been detected 

completely correctly, which makes 93% success rate counted by number of pages. As it can be seen, this 

measure is higher than both the precision and the recall. 

The analysis of the extractor results in the case of failure shows that in many cases, even if results are not 

completely correct, they are not far from the expectation. There are different reasons of the algorithm 

failing. Some of them may result from non-optimal choice of algorithm parameters, others from document 

layout being too far from the assumed one. In some rare cases, even manual inspection of the document 

does not allow an obvious identification of figures. 

4.3 The Automatic Tuning of Parameters 

In previous section we have shown the results obtained by executing the extraction algorithm on a sample 

set. During this execution we were using extractor arguments which seemed to be the most correct based 

on our observation but also on other research (Cleveland 1984)(typical sizes of figures, margin sizes etc. ). 

This way of algorithm configuration was useful during the development, but is not likely to yield the best 

possible results. In order to find better parameters, we have implemented a method of automatic tuning. 

Metrics described in the previous section (recall and precision) provided a good method of measuring the 

efficiency of the algorithm running based on given parameters. 

The choice of optimal parameters can be relative to the choice of documents on which the extraction is to 

be performed. The way in which the testing set has been selected, allowed us to use it as representative 

for the HEP publications. In order to tune the algorithm, we have used a described subset of testing set 

from the previous step as a reference. The subset consisted of all entries created after 1990. This allowed 

us to minimise the presence of scanned documents which, by design, cannot be correctly processed by our 

method. 

The adjustment of parameters has been performed by a dedicated script which has executed the 

extraction using various parameter values and has read results. The script has been configured with a list of 

tuneable parameters together with their type and allowed values range. Additionally, the script had the 

knowledge of the believed best value, which was the one used in previous testing. 

In order to decrease the complexity of training, we have made several assumptions about the parameters. 

These assumptions are only an approximation of real nature of parameters but the practice has shown that 

they are good enough to permit the optimisation:  

 We assume that the precision and recall are continuous with respect to the parameters. This allows 

us to assume that efficiency of the algorithm for parameter values close to a given one will be close. 

The Optimisation has proceeded by sampling the parametric space in a number of points and 

executing tests using the selected points as parameter values. Having N parameters to optimise and 

dividing the space of every parameter into M regions leads to the execution of MN tests. Execution 

of every test is a timely operation due to the size of the training set.  

 We assume that parameters are independent from each other. This means that we can divide the 

problem of finding an optimal solution in the N-dimensional space of N configuration arguments 

into finding N solutions in 1-dimensional subspaces. Such an assumption seems to be intuitive and 

considerably reduces the number of necessary tests from O(MN) to O(M N), where M is the number 

of samples taken from a single dimension.  



In our tests, the parametric space has been divided into 10 equal intervals in every direction. In addition to 

checking the extraction quality in those points, we have executed one test for the so-far best argument. In 

order to increase the level of fine-tuning of the algorithm, each test has been re-executed in the region, 

where chances of finding a good solution were considered the highest. This consisted of a region centred 

around the highest result and having a radius of 10% of the parameter space. 

Figure 6 and Figure 7 show the dependency of the recall and the precision on an algorithm parameter. The 

parameter depicted in Figure 6 indicates what minimal aspect ratio the figure candidate must have in order 

to be considered a correct figure. It can be seen that tuning this heuristic increases the efficiency of the 

extraction. Moreover, the dependency of recall and precision on the parameter is monotonic which is the 

most compatible with the chosen optimisation method. 

The parameter of Figure 7 specifies which fraction of the area of the entire figure candidate has to be 

occupied by graphical operations. This parameter has a lower influence on the extraction efficiency. Such a 

situation can happen when more than one heuristic influences the same aspect of the. This is contradictory 

with the assumption of parameter independence, but we have decided to use the present model for the 

simplicity. 

 

  

Figure 6: Effect of the minimal aspect ratio on precision and recall 

 

 

Figure 7: Effect on the precision and recall of the area fraction occupied by graphical operations 



After executing the optimisation algorithm, we have managed to achieve the recall of 94.11% and the 

precision of 96.6% which is a considerable improvement with respect to previous results of 88%. 

5 Conclusions and Future Work 
This work has presented a method for extracting figures from scientific publications in a machine readable 

format, which is the main step towards the development of services enabling access and search of images 

stored in scientific digital libraries. In recent years, figures have been gaining increasing attention in the 

Digital Libraries community. However, little has been done to decipher the semantics of these graphical 

representations and to bridge the semantic gap between content which can be understood by machines 

and this which is managed by digital libraries. Extracting figures and storing then in the uniform and 

machine readable format constitutes the first step towards the extraction and the description of the 

internal semantics of figures. Storing semantically described and indexed figures would open completely 

new possibilities of accessing the data and discovering connections between different types of publishing 

artefacts and different resources describing related knowledge  (Praczyk, Nogueras-Iso and Kaplun, et al. 

2011).  

 Our method of detecting fragments of PDF documents that correspond to figures is based on a series of 

observations of the character of publications. However, tests have shown that additional work is needed to 

improve the correctness of the detection. Also the performance should be re-evaluated after we have a 

large set of correctly annotated figures, confirmed by users of our system.  The heuristics used by the 

algorithm are based on a number of numeric parameters which we have tried to optimise using automatic 

techniques. The tuning procedure has made several arbitrary assumptions on the nature of the 

dependency between parameters and extraction results. A future approach to the parameter optimisation, 

requiring much more processing, could involve the execution of a genetic algorithm (Theodiridis and 

Koutroumbas 2006) which would treat the parameters as gene samples. This could potentially allow a 

discovery of a better parameter set because a smaller set of assumptions would be imposed on the 

parameters. A vector of algorithm parameters could play the role of a gene and random mutations could 

be introduced to previously considered and subsequently crossed genes. The evaluation and selection of 

surviving genes could be performed by the usage of the metrics described in section 4.2. Another approach 

to improving the quality of the tuning could involve extending the present algorithm by a discovery of 

mutually dependent parameters and usage of special techniques (relaxing the assumptions) to fine-tune in 

subspaces spanned by these parameters. 

All of our experiments have been performed using a corpus of publications from HEP. The usage of the 

extraction algorithm on a different corpus would require tuning the parameters for the specific domain of 

application. For the area of HEP, we can also consider preparing several sets of execution parameters 

varying by decade of document publication or by other easy to determine characteristics. Subsequently, 

we could decide which extraction method to run, based on those metrics. 

In addition to a better tuning of the existing heuristics, there are improvements which can be made at the 

level of the algorithm. As an example, we could mention extending the process of clustering text parts. In 

the current implementation, the margins by which textual operations are extended during the clustering 

process are fixed as algorithm parameters. This approach proved to be robust in most cases. In fact, 

distances between text lines tend to be different depending on the currently utilised style. Every text 

portion tends to have one style that dominates. An improved version of the text-clustering algorithm could 

use local rather than global properties of the content. This would not only allow to correctly handle the 



entire document written using different text styles, but also help to manage cases of single paragraphs 

differing from the rest of the content. 

Another important, not implemented yet, improvement related to figure metadata is the automatic 

extraction of figure references from the text content. Important information about figure content might be 

stored in the surroundings of the place where publication text refers to a figure. Furthermore, the meta-

data could be extended by the usage of some type of classifier which would assign a graphics type to the 

extracted result. Currently, we are only distinguishing between tables and figures based on simple 

heuristics involving number and type of graphical areas and the text inside of the detected caption. In the 

future, we could detect line-plots from photos, histograms and so on. Such a classifier could be 

implemented using Artificial Intelligence techniques such as Support Vector Machines (Theodiridis and 

Koutroumbas 2006). 

Finally, partial results of the figures extraction algorithm might be useful in performing other PDF analyses: 

 The usage of clustered text areas could allow a better interpretation and indexing of textual 

content stored in digital libraries with full text access. Clusters of text tend to describe logical parts 

like paragraphs, section and chapter titles and so on. A simple extension of the current schema 

could allow the extraction of predominant formatting style of the text encoded in a page area. Text 

parts written in different styles could be indexed in a different manner giving for instance more 

importance to segments written with larger font. 

 In section 3.4 we mentioned that the algorithm detects not only figures, but also tables. A heuristic 

is being used in order to distinguish tables from different types of figures. Our present effort 

concentrates on correct treatment of figures, but a useful extension could allow extraction of 

different types of entities. For instance, another common type of content ubiquitous in HEP 

documents are mathematical formulas. Thus, in addition to figures, it would be important to 

extract tables and formulas in structured format allowing a further processing. 

The internal architecture of the implemented prototype of the figure extractor allows easy implementation 

of extension modules which can compute other properties of PDF documents. 
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