(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

Implementation of Rule Based Specifications

for CIM Database Applications

P.R. Muro-Medrano
Electrical Engineering and Computer Science Department

University of Zaragoza, Spain

G. Harhalakis, C.P. Lin, L. Mark

Systems Research Center
University of Maryland
College Park, MD 20742, USA

Abstract

This paper focuses on the development of a methodology within a software
environment for automating the rule based implementation of specifications of integrated
manufacturing information systems. The specifications are initially formulated in a
natural language and subsequently represented in terms of a graphical representation by
the system designer. A new graphical representation tool is based on Updated Petri Nets
(UPN) which we have developed as a specialized version of Colored Petri Nets (CPN). The
application presented here deals with the control and management of information flow
between Computer Aided Design, Process Planning, Manufacturing Resource Planning
and Shop Floor Control databses.

1 Introduction

In a modern factory, besides parts being produced, there is also a tremendous amount of
data being processed. For an efficient operation, it is necessary not only to control the
manufacturing processes of products but also to manage and control the information flow
among all the computerized manufacturing application systems that exist in a modern factory.
The emphasis of most of the previous and current research projects is on individual aspects of
CIM, such as RPI [HSU 87] on developing a global database framework, TRW [SEPE 87] on
synchronizing the interface between application systems and distributed databases, and U. of
Illinois [LU 86] on developing a framework to perform common manufacturing tasks such as
monitoring, diagnostics, control, simulation, and scheduling. Their approach aims at developing
a generic CIM architecture, creating a global database framework, or interfacing shop floor
activities. However, the future in automation of modern factories will be based on a distributed
environment which needs not only a generic database framework but also a controller, usually
a knowledge rule-based system, to control the relationships between activities within all the
computerized manufacturing application systems. Our approach is to develop such a control
mechanism, in the form of a rule based system, for managing the information flow among all

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

the existing and new manufacturing application systems, and to fill the gap between the high
level production management and the low level factory automation [HARH 90] [HARH 91].
Similar approach has been used in [DILT 91] which, different from ours, emphasizes on the
design of an integrated database framework and lacks of a formal modeling tool for validation
and implementation.

This paper first briefly presents a design methodology for transforming user specifications
(company policies and expert rules) into executable computer code to control the information
flow in a distributed environment with multiple databases. This methodology reflects the
procedure to build a knowledge base serving as the control mechanism. It includes knowledge
acquisition, graphical modeling, systematic validation and automated implementation. It
features an enhanced graphic modeling tool - Updated Petri Nets (UPN) - which is capable
of modeling database updates and retrievals, under specific constraints and conditions, and
uses a hierarchical modeling approach. The emphasis of this paper is placed, however, on the
automatic translation of the structural representation (UPN) into a rule specification language,
which facilitates the implementation stage and reduces the design cycle of frequently changing
knowledge rule-based systems.

This paper is structured as follows. The second section presents the overall design
methodology of our INformation System for Integrated Manufacturing (INSIM), its
specifications and architecture [HARH 91]. The third section discusses the UPN and
its features. The fourth section describes the Update Dependencies language used for
the implementation of the knowledge rule-based system. The fifth section details the
implementation strategy and the translation procedure. The sixth section provides an example
of the automatic translation between the UPN and UDL based on the rule specification in the
CAD/CAPP/MRP II/SFC integrated system. The last section presents our conclusions with
recommendations for future work.

2 Knowledge Base Design Methodology

Our research, aiming at linking product and process design, manufacturing operations and
production management, focuses on the control of information flow between each of the key
manufacturing applications at the factory level, including Computer Aided Design (CAD),
Computer Aided Process Planning (CAPP), Manufacturing Resource Planning (MRP II), and
Shop Floor Control (SFC) systems. This linkage between manufacturing application systems
involves both the static semantic knowledge of data commonalities and the dynamic control
of functional relationships. The common data entities, which form the basis of the integrated
system, include: Parts, Bills of Material in CAD, Parts, Bills of Material, Work Centers,
Routings in CAPP, Parts, Bills of Material, Routings, Work Centers, Manufacturing Orders
in MRP II, Parts, Routings, Work Centers, Manufacturing Orders in SFC. The functional
relationships deal with the inter-relationships of functions within those applications.

The design and maintenance of a Knowledge Based System (KBS) to control the functional
relationships and information flow within the integrated system is a major task for the design
of Knowledge Based Systems. Our design methodology for it is illustrated in [HARH 91]. It
starts from user defined rule specifications, reflecting a specific company policy, which is then
modeled using a special set of Colored Petri Nets - UPN (Updated Petri Net) and a hierarchical
modeling methodology. The next step is to convert the UPN model into a set of General Petri

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

Nets (GPN) for validation purposes, and feed the results back to the user to resolve conflicting
company rules and errors introduced during the modeling phase. After the model has been
validated, a parser translates the UPN model into a rule specification language. The end result
is a software package that controls the data flow and accessibility between distributed databases.
In short, the input is a set of company rules and the output is an Al production system for
controlling operations, accessibility and updates of data within the manufacturing applications
involved.

3 Structured Modeling of the Domain Knowledge

3.1 Evolution of Updated Petri Nets

Petri Nets have been applied to most systems in representing graphically not only sequential but
also concurrent activities [PETE 81] [MURA 89]. Because of their mathematical representation,
they can be formulated into state equations, algebraic equations, and other mathematical
models. Therefore, Petri Nets can be analyzed mathematically for the verification of system
models and are ideal for modeling dynamically and formally analyzing complex dynamic
relationships of interacting systems. Although General Petri Nets initially adopted in this
research can in principle handle the modeling of the domain knowledge, it has become necessary
to define more complex semantics in order to handle the increasing complexity of the domain
knowledge, due to the involvement of more applications and their entities. Hence we have
developed the Updated Petri Nets (UPN), which is a specialized type of the Colored Petri Nets
(CPN) [JENS 87, and a hierarchical modeling methodology with a systematic approach for
the synthesis of separate nets. The use of UPN allows the model designer to work at different
levels of abstraction. Once we have this net we can selectively focus the analysis effort on a
particular level within the hierarchy of a large model.

An UPN is a directed graph with three types of nodes: places which represent facts
or predicates, primitive transitions which represent actions, and compound transitions
which represent metarules (subnets). Enabling and causal conditions and information flow
specifications are represented by arcs connecting places and transitions.

Formally, an UPN is represented as: UPN =< P,T,C,I~,I*, My, 1,, MT >, where:

1. P,T,C,I,I*, M, represent the classic Color Petri net definition. They identify the part
of the information system that provide the conditions for the information control. Only
this part of the UPN net is used in the validation process. These terms are defined as

follows [JENS 87]:

e P = {p1,...,pn} denotes the set of places (represented graphically as circles).
T = {t1,...,tm} denotes the set of primitive transitions (represented graphically
as black bars). PNT =@ and PUT # 9.

e C is the color function defined from PUT into non-empty sets. It attaches to
each place a set of possible token-data and to each transition a set of possible data
occurrence.

o I~ and I are negative and positive incidence functions defined on P x T, such that
I=(p,t), I*(p,t) € [C(t)ms — C(p)msle V(p,t) € P x T where Sys denotes the set
of all finite multisets over the non-empty set S, [C(t)us — C(p)ms] the multiset

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

4 The Update Dependency Language, Syntax and
Semantics

We have adopted a fairly new concept in systems integration, known as database
interoperability. It is being realized through the development of the Update Dependency
Language (UDL) in the Department of Computer Science, at the University of Maryland
[MARK 87]. Database interoperability can be described as the concatenation of the schemata
of each of the databases of the application systems, along with a rule set constructed for
each separate database, called update dependencies. These update dependencies control inter-
database consistency through inter-database operation calls. We propose the use of UDL as a
special rule specification language, to be used for the implementation of our Knowledge Based
System. The syntax and semantics of the language are formally presented in the following
subsections.

4.1 UDL Syntax

For each relation and view defined in a relational database, the database designer defines
procedures for the three database modifications insertion, deletion, and update. In addition, a
set of application procedures for each relation may be defined, or as is the case in this paper,
automatically generated by the translation from UPN to UDL.

Procedures have the following form:

OR(AI o I/I,---a A, = Vn[; Al " Wla'"aAn i Wn])
St 01,01,1,---101 ny -

e Cm-: Om,la i] Om.ﬂm'

where [] indicates an optional element.

A procedure is uniquely identified by its operation type O and the name R of the base
relation or view for which it is defined. The type of a modification procedure is either insert,
delete, or update; the type of an application procedure is a user-defined name. The formal
parameter list, required for all procedures, binds the values of relation R’s attributes A; to the
variables V;, 1 <1 < n. The replacement parameter list, used only in update procedures, binds
the replacement values for relation R’s attributes A; to the variables W;, 1 < <n.

As an example, an application procedure named release, is applied on the work center
relation in the MRP II database and involves two modification procedures: update and insert.
This example, which releases a work center record in MRP 11, is shown in figure 2 and discussed
in details below.

The body of a procedure consists of a set of procedure alternatives, each with the elements:
a condition C;, 1 < : < m, on the database state; and a sequence of procedure invocations
Oiy.Oiniy 1 <1 < m. Conditions are safe expressions formed through conjunction and
negation of the following atoms (parenthesis are used to alter the default precedence of
operators):

o Tuple existence tests with the form, R(A, = Vi, ..., Ay = Vi), where R is the name of any
base relation or view defined in the database, A;, 1 < i < k, are attribute names of R, and

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

MRP II
dBS

Mwe{wcid=wecid#)

Mwe(weid=weid#)

Mwe(weid=weid#,
cap=cap#,sta=r)

Pwe(weid=wcid#,des=des#, :
dep=dep#,cap=cap#,sts=h) EPwe

release(mrpwc)

t1: request and read weid

t2: write error message and return

t3: write error message

t4: request other information

t5: update work center record in MRP II dBase with sts=r, and additional data
insert a work center record in CAPP dBase

p1l: user starts the transaction

p2: weid is provided

p3: work center ID does not exist in MRP 11

p4: work center already has 'r’ status in MRP 11

p5: all the necessary data is provided

EMwec: existence of work center in MRP II DataBase
NMwec: non-existence of work center in MRP Il DataBase
EPwec: existence of work center in CAPP DataBase
NPwc: non-existence of work center in CAPP DataBase

Figure 1: Subnet of the work center creation scenario “Release of a work center in MRP II”.

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

extension of [C(t) — C(p)ms] and [...]r denote a set of linear functions (although,
any linear function is allowed in the general color Petri net, only projections,
identities and decolor functions have been needed so far in our models). The net has
no isolated places or transitions.

e M, the initial marking is a funtion, such that: My(p) € C(p),Vp € P.

2. 1, is an inhibitor function defined on P x T, such that:
L(p,t) € [C(t)ms — C(p)mslL, V(p,t) € P xT.

3. MT = {mdt,,...,mt;} denotes the set of compound transitions (represented graphically as
blank bars), these are transitions which will be refined into more detailed subnets.

We have divided the representation of the domain knowledge in the following four groups:
Data, Facts, Rules, Metarules. Data and relations between different data are used in relational
database management systems. Facts are used to declare a piece of information about some
data, or data relations in the system. The control of information flow is achieved by Rules.
Here, we are considering domains where the user specifies information control policies using ”if
then” rules. Rules are expressed in UPN by means of transitions and arcs. Metaknowledge,
in the form of metarules, is represented by net aggregation and hierarchical net decomposition
(compound transition), and will be detailed below.

An example, which represents the release of a work center in MRP 11, is explained in natural
language below and is modeled in UPN, as shown in figure 1 to illustrate the corresponding
component of UPN. Invoking the work center release transaction in MRP II triggers a set of
consistency checks, which are as follows: the WC 1.D. provided must exist in MRP II with hold
status; all the required data fields should have been filled, and any data fields left out by users
are requested at this stage. If all these checks are satisfied, the system changes the work center
status code from ’hold’ to ’released’, and a skeletal work center record is automatically created
in the work center file in CAPP, with its status set to 'working’.

Data : An example can be illustrated by the work center relation in MRP II with the record
name as Mwec.

Facts : Facts in UPN will be represented by places and the tokens in the places. Facts can
be seen in figure 1 where they are used to represent some user specifications (places

D1, P2, P3, Pa, Ps, N Mwe, EMwe, N Pwe and E Pwe).

Rules : Rules are expressed in UPN as the combination of two entities: transitions and the
arcs with their associated functions connecting the transition with its input/output places.
Arcs identify information flow and flow conditions.

Metarules : Metaknowledge and hierarchical net descriptions are represented by Metarules
(expressed by compound transitions of the UPN) and mainly used in UPN as a mechanism
to define subnets. They are used in two different directions to allow a structural and
hierarchical composition of the domain knowledge: Horizontal metarules relate rules at
the same level of abstraction and allow the aggregation of rules under specific criteria.
For example, the relationship of rules shown in figure 1 is a horizontal metarule. Vertical
metarules establish relationships between one rule and other rules which define knowledge
at a lower level of abstraction and allow a structure of rules to form an abstraction
hierarchy.

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

Vi, 1 <1 <k, are constants or variables. The relation, Mwe, used in the above example
would have the following form: Mwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap). Similarly, the
tuple non-existence tests are reprepresented in the following form: ~ R(A, = V}, .., Ax =
Vi). A test of the non-existence of a work center record in MRP II is shown in the above
example as: ~ Mwc(wcid=Wcid).

e Comparisons of the form, X 6 Y, where 6 is comparison operator (<, <,=,>,>) and X
and Y are constants or variables. A comparison evaluates to true if the algebraic relation
0 holds between X and Y. The empty condition. It always evaluates to true.

o Negative or positive variable instantiation tests with the form, var(V;) or nonvar(V;), where
Vi, 1 <1t < n, are variables introduced in the head of the procedure. In the above example,
var(Wcid) and nonvar(Wcid) are used to test the negative and positive instantiation of
variable Wecid.

o Fxistential quantification, exists V,...V,, C. An existential qualification evaluates to true
if there is at least one substitution of values V;, 1 < i < n that satisfies the sub-condition
C, which cannot contain any instantiation tests. There must be at least one occurrence
of each V; that is free in C.

Procedure invocations have one of the following forms:

e an application procedure invocation has the form (e, and f are values of the respective
attribute): < user def. name > R(A; = ey, ..., Ax = ex[; A1 = f1, ..., Ax = fi])-

E.g. release Mwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap)

e insertion, deletion and update procedure invocations have the forms:
insert R(A; = ey, ..., Ax = e;), delete R(A; = e,...,Ax = €;), and
update R(A; = €1,.... Ap = g Ay = fryos Ag = fr)-

E.g. update Mwc(wcid=Wcid,sts=h;wcid=Wcid,cap=Cap,sts=r)

e physical insertion, deletion, and update invocations have the forms:
ins R(A] - 61,...,An = en), del R(Al = €1y ey An = en), and
upd R(Al — 81}"‘1A?’£ :e‘n;Al :f].:l'“-vAn :fn)-

e primitive i/o operations for read and write, and the operation fail are also included in the
update dependency formalism.

The procedure abstraction/encapsulation hierarchy enforced by the syntax for the update
dependency formalism has three levels. The bottom level corresponds to the physical
operations; the middle level corresponds to the modification procedures; and the top level
corresponds to the application procedures.

4.2 UDL Semantics

The execution of a procedure can be depicted by an AND/OR graph. The AND nodes are those
whose executions are tied together by an arc; the OR nodes are those whose executions are not
tied together by an arc. Each execution of an OR node represents the execution of one procedure
alternative. The ordered sequence (left-to-right) of executions of an AND node represents the

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

execution of the elements of one procedure alternative; the first represents the evaluation of the
condition, and the following represent the executions of the invoked procedures. A ROOT node
represents the execution of a user-invoked procedure. A LEAF node represents the evaluation
of a condition, the execution of a physical insertion, deletion or update, or the execution of an
i/o operation. An OR node succeeds if one of its executions succeeds. An AND node succeeds
if the evaluation of its condition returns the value TRUFE and the execution of each of the
procedures it invokes succeeds.

When a procedure is invoked, then its formal parameters are bound to the actual parameters.
The scope of a variable is one procedure. Conditions are submitted to the database system
as queries, thus the order of evaluation of atoms is determined at run-time. The evaluation
of a condition returns the value TRUF if the query corresponding to the condition returns a
non-empty result; existentially quantified variables are bound to values that satisfy the query.
The execution of a physical insertion, deletion or update, and the execution of an i/o operation
always succeed. The selection of execution of procedure alternatives is non-deterministic and
execution of procedure alternatives may be done in parallel. However, the effects of only one
of the alternative will be seen when the procedure succeeds. Furthermore, while an alternative
is executing it will only see database updates that have happened on its execution path; it
will not see database updates from other alternatives that might be executing in parallel. If
a procedure execution fails, i.e. none of its alternatives succeed, then the database is left
completely unchanged by the procedure invocation. Conditions are submitted to the database
system as queries, as mentioned above.

5 Translation of UPN to UDL

In this section, we would like to focus on the implementation of the user specifications. Once
we have a structured and formal view of these specifications, we need to translate them to an
execution language. Starting with an UPN we attempt to create a program capable of satisfying
all specifications represented in that net.

User specifications do not necessarily need to be concerned with some problems which
are already managed by the existing computer software technology. For example, database
management systems are capable to deal with problems related to the concurrent access to the
database; furthermore, if one update operation can not be successfully completed no part of
that operation is performed. Therefore, these issues need not be part of the model

This section describes first the translation of particular features of UPN to UDL, and then
proposes the translation procedure.

5.1 Data in UPN as UDL Relations

The information flowing through an UPN net can be atomic data, although this atomic
information can be aggregated into more complex data structures. Atomic data and its data
set can be translated to UDL as domains. For example, the data set of a work center status in
MRP II (which can have only two different values h for hold, and r for released: ST'S = {r, h})
can be represented in UDL by a domain of character type. In UDL data structures are defined
by a relation name and a tuple of data, which correspond to specific attributes specified in
UPN: R(A; = V4,...,Ax = V). An example of a work center record in MRP II in the form of a

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

UDL relation is shown below. It represents a work center 1101 (wcid) which is a 1athe (des),
located in the machining (dep) department, having h(hold) status (sts), na(not available) state
(ste), null(unknown) capacity (cap), M12 resource code (res), and null(unknown) effectivity
start date (esd).
ch(wcid=1t101,des=1athe,dep=machining,cap=null,stszh,ste=na,res=}‘[12,esd=null)

5.2 Facts in UPN as UDL Conditions

In order to verify whether a rule is enabled or not, it is necessary to verify if the precondition part
of the rule matches with the status information in the system. Status information is represented
by UPN places and their marking. Access to that information is specified in UPN by means of
arcs and arc expressions. Two different types of status information can be distinguished:

Database status : Requires the access to a database record and the values of its attributes.
This can be implemented by using the UDL relational form where the record is identified
by the record id number. For example: In figure 1, the database check of work center
It101 having a hold status, corresponds in UPN with an arc from the place EMwc of the
MRP database having the function wecid = [t101, sts = h. This is translated into UDL
in the same form: Mwc(wcid=1t101,sts=h). On the other hand the non-existence of the
work center lt101 corresponds in UPN with an arc from the place NMwc of the MRP II
database having the function wcid = 11101, which can be translated into the UDL form
of: ~ Mwc(wcid=1t101).

Reasoning process status : Generally corresponds to the intermediate states of an UDL
application procedure. For example, places p; to ps in figure 1.

5.3 Database related arc conditions

The next step in the translation process is to identify UPN elements, which correspond to arc
conditions directly relating to database places, in order to translate them into UDL elements.
They will be translated into UDL checking conditions or modification procedures to access or
modify the database. These elements are identified as follows:

e Checking a record. In UPN form, the database check is represented by a pair of
input and output arcs, which have the same arc expression, linked between a transition
and a database place. The check is implemented, as mentioned before, for database
access. The case of a database place representing the non-existence of the record will be
implemented using the UDL negative form. For example, transition 3 in figure 1 has two
arcs to and from place EMwe (in the MRP II database) with the same arc expression:
weid = weid##, sts = r. This can be translated into UDL form as:

Mwc(wcid=Wcid,sts=r)

e Inserting a record occurs when there is an arc from a database place to a transition
which represents non-existence of a record, and another arc from the transition to a
database place representing the existence of the same record. It is implemented using
the UDL modification procedure insert(< relation name >(< tuple spec >)). For
example, transition ¢5 in figure 1 has one arc from place N Pwc and one to place EPwc
(in the MRP II database) with the arc expression Pwc(wcid = wcid#, des = des#,dep =

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

dep#, cap = cap#, sts = w). This can be translated into UDL form as:
insert Pwc(wcid=Wcid, des=Des, dep=Dep, cap=Cap, sts=w)

e Deleting a record from the database can be recognized when an arc stems from a database
place representing the existence of a record to a transition, and another arc stems from
the transition to a database place representing the non-existence of the same record. It
is implemented using the UDL modification procedure as: delete(< relation name >(<
tuple spec >))

¢ Updating a record in the database can be recognized when an arc stems from a database
place representing the existence of a record, to a transition and another arc, in the reverse
direction, but with different functions. It is implemented using the UDL modification
procedure update(< relation name >(< old tuple spec >;[< new tuple spec >
])). For example, transition ¢ in figure 1 implies an update to the record Mwec
(in place EMwc) in the MRP II database that can be translated into UDL form as:

update(Mwc(wcid=Wcid;wcid=Wcid,cap=Cap,sts=r))

5.4 Requesting/printing information

The following is to identify UPN elements, which correspond to arc conditions directly
relating to information input/output, to translate them into UDL i/o primitives operations
for requesting or printing information to the user:

¢ Requesting information from the users. They can be recognized when a transition
is a source transition, where some information that is leaving the transition through the
outcoming arcs did not enter through any incoming arcs. This new information must
be requested from the user. It is implemented using the UDL primitive operation read
(< domain variable >). For example, transition ¢, if figure 1 does not receive information
from place p; but one needs to provide a work center identification number in variable
weid4. This information must be provided by the user and can be implemented by: read
(Weid).

e Printing a message to the users. They can be recognized when sink places, where some
information arrives at the place through the incoming arcs, but does not leave the place
through any outgoing arcs (generally because it has no outgoing arcs), appear in the nets.
This information must be shown to the user. It is implemented using the UDL primitive
write(’< place label text >’ ,< domain variable >). If there is no domain variable,
the label identifying the place is shown as write(’< place label text >’). The last
option may be used to show single error messages. For example, place p4 in figure 1 can
be translated as an error message for the work center identification provided in variable
wetd#: write(?Output in P4 for data: °’ wcid#)

5.5 Rules and Metarules as UDL Procedures

The following step corresponds to the translation of the transition set itself. UDL procedures
provide a very powerful mechanism to represent if-then rules (transitions). So, UDL procedures
will be used to represent subnets at any level of abstraction. The translation strategy follows
what we call an information driven approach for the translation. The purpose of the

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

integrated manufacturing information system is to collect some information which is used
to affect the external world or the system itself, this means that in each context (scenario)
transitions can be differentiated by the information they need and the information they
provide. Parameters of the procedure reflect the information that may be needed in a context.
Using UDL negative var or positive nonvar variable instantiation tests the availability of
this information in the context can be checked. Successive transition executions are made
by recursive calls to the same procedure. We need to identify when the recursive call sequence
finishes, this happens when the reasoning process has found some solution and the subnet
evolution finishes. We can identify this by finding out when the outgoing arcs of a transition do
not inject information in internal places (places related with decision process information). The
actual parameters sent in each recursive call correspond to the information that is transmitted
to the postconditions of the transition being executed.

5.6 Translation Procedure

The translation of UPN to UDL can be seen as another special ”implementation” of Petri
nets, specific for this application domain. This implementation of UPN is simpler than the
implementation of a generic colored Petri net due to the constraints imposed by UPN over
the general Petri net formalism (the variety of preconditions are highly constrained, rules
are supposed to be well structured in metarules, manufacturing database domain related
specifications, etc.). The purpose of the translation procedure is to generate efficient code
in UDL, the language in which the specifications will be executed. To start the translation
procedure, the UPN model must be provided. The procedure for translating one subnet into a
piece of UDL code is detailed as follows:

1. Generate a UDL procedure heading, based on the UPN metarule name (< O >) and its
corresponding database relation (< R >). The set of attribute names to be included in
the procedure’s formal parameter list is defined by the set of all attribute names that
appear in the arc expressions of the subnet (A, ..., A,;). The procedure head is:
<O><RBR>lh=0 .=
Where (Vi,...,V,,) is the set of formal variables for which the values of attributes,
Ay, ...y Ap, from relation < R > are bound (these variable names can be the same as

those in the UPN model).

One UDL procedure is composed by several alternatives, one for each transition in the
metarule subnet. The following steps must be done for each transition.

2. Conditions for the alternatives (preconditions of the transition) are defined by incoming
arcs to the transition:

(a) Recognize checking UDL elements, as explained in section 5.3. The conjunction of
these checkings is a precondition for the procedure alternative:

An=Vaiuu=Y)

(b) Find positive variable instantiations by looking at the variables in the arc expressions
from the incoming arcs which do not belong to the database checkings recognized
above (Var;,...,Var;), and generate a positive variable instantiation test for each
one. The conjunction of these tests is another precondition:
nonvar(V;) A ... A nonvar(V;)

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

(c) The rest of the formal variables have negative instantiation. Only the variables
representing attributes that will provide information to the output places and are
not coming from the input places (V,..., ;) must be checked. Generate a negative
variable instantiation test for each of them. The conjunction of these tests is another
precondition: var(V;) A ... A var(V,)

3. Operations for the alternatives (postconditions of the transition) are defined by outgoing
arcs from the transition. Each one of the following steps can produce new operations:

(a) Recognize input and output UDL elements, as explained in section 5.4. For
each input variable generate the appropriate input sequence: write(’Enter <
Tezt V, >’), read(V;),

(b) Recognize deletion, insertion and update UDL modification procedures, as
explained in section 5.3 and generate the appropriate invocations:
delete(< relation name >(< tuple spec >))
insert (< relation name >(< tuple spec >))
update(< relation name >(< old tuple spec >;[< new tuple spec >]))

(c) Generate a recursive call if any of the transition’s output places, which is not a
database place, is an input place to any transition within the subnet. Only the
variables (V;, ..., V;) which are used in the outgoing arc expressions connecting to the
mentioned output places are used in the parameter list of the procedure call.

<O3< RN =V hy=0]

6 Example of Translating a single-procedure UPN
subnet into one UDL procedure

In order to clarify the translation procedure, we return to the example shown in figure 1, which
was used to illustrate the creation of UPN models in section 3.1. This net is simple because it
does not require further refinement to create additional subnets. The goal now is to translate
the UPN representation to the respective UDL code.

The name of the UPN is 'release Mwc’ and the corresponding database records - work center
record in MRP II and CAPP - are:
Mwc (wcid,des,dep,cap,sts,ste,res,esd) and Pwc (wcid,des,dep,cap,sts)

1. Procedure heading generation: < O >+« release (metarule name) and < R >« Mwc
(corresponding database record). Attribute names that appear in the arc expressions are:
weid, des, dep, cap, sts and their corresponding variables (wcid#, des#, dep#, cap#) are
modified into the follow UDL variable syntax: Wcid, Des, Dep, Cap. The procedure
heading becomes =
release Mwc (wcid=Wcid, des=Des, dep=Dep, cap=Cap)

2. Conditions for the alternatives:

t; There is no connection with database places. This means there is no checking of
the database. On the other hand, no positive variable instantiations are needed.
The rest of the variables (Wcid, Des, Dep and Sts) have negative instantiations;
however, there is only one outgoing arc connected with place p, with arc expression

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

release Mwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap)
— var(Wcid),
write(’Enter wcid’),
read(Wcid),
release Mwc(wcid=Wcid).
— nonvar(Wcid) A ~Mwc(wcid=Wcid),
write(’Work center ID does not exist in MRP II, enter again’, Wcid),
release Mwc().
— nonvar (Weid) A Mwc(wcid=Wcid,sts=r),
write(’Work center already has ’’r’’ status in MRP II’, Weid),
— nonvar(Wcid) A var(Cap) A Mwc(wcid=Wcid,des=Des,dep=Dep,sts=h),
write(’Enter capacity’),
read(Cap),
release Mwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap).
— nonvar(Wcid) A nonvar(Des) A nonvar(Dep) A nonvar(Cap),
update Mwc(wcid=Wcid,sts=h;wcid=Wcid,cap=Cap,sts=r),
insert Pwc(wcid=Wcid,des=Des,dep=Dep,cap=Cap,sts=w).

Figure 2: UDL code for the “Release of a work center in MRP II”.

weid#. This means that a work center identification number (variable Wcid) was not
provided in the incoming arcs to the transition, but will be provided to the outgoing
arc. The complete condition part is = var(Wcid)

t, It has incoming and outgoing arcs to NMwc (MRP II database) with the same arc
expression Mwec(wcid = weid#). This is a checking for the non existence of Mwc
with that specific work center identification number = ~Mwc(wcid=Wcid). It has
another incoming arc with wcid# from p; providing the work center id. information
which must be checked for positive instantiation = nonvar(Wcid). The complete
condition part is the conjunction of these conditions =
nonvar(Wecid) A ~Mwc(wcid=Wcid)

t3, 14,15 Similarly their complete condition are shown in figure 2.
3. Operations for the alternatives:

t; Variable’s wcid# value needs to be requested (there is no incoming variables and
variable wcid# is outgoing) =
write(’Enter wcid’), read(Wcid),. On the other hand, ¢; has an output place, p,,
which is an input place to transitions, t,, t3 and t4. This means that the reasoning
process is not completed yet and a recursive call is required. The parameters of this
call are the ones required by the outgoing arcs = release Mwc(wcid=Wcid)

t, An output primitive can be easily recognized here: place ps is an output place (it is
a sink place), the information in the arc expression, wcid#, and the text associated
with the interpretation of p3 must be displayed =
write(’Work center ID does not exist in MRP II, enter again’, Wcid),

A recursive call is also required.

t3,t4,t5 Similarly, operations for transitions t3,%; and ¢5 are recognized following the
translation procedure and are shoen in figure 2.

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.
L4
7 Conclusions

The INformation Systems for Integrated Manufacturing (INSIM) design and maintenance
methodology has been developed and implemented for generating knowledge based systems
to effectively manage and control the information flow among CAD/CAPP/MRP II/SFC
application systems. Its implementation strategy aims at facilitating the translation between
UPN and UDL (as a rule specification language) and provides us a powerful tool to reduce
the life cycle of developing knowledge bases. A prototype of the knowledge based system for
integrating CAD/CAPP/MRP I1/SFC application systems has been developed based on the
proposed methodology with UPN and UDL technologies. This prototype has demonstrated the
feasibility of our design methodology and has won considerable attention from both industry
and other related research projects. The future work includes the incorporation of actual CAD,
CAPP, MRP II, and SFC software packages and a database management system (ORACLE)
as the next step of implementation.

References

[DILT 91] Dilts, D.M. and Wu, W. ”Using Knowledge-Based Technology to Integrate CIM
Databases ”, IEEE Transaction on Data and Knowledge Engineering, vol.3, no. 2,
pp. 287-245 ,1991.

[HARH 90] Harhalakis, G., Lin, C., Hillion, H., and Moy, K., ”Development of a Factory Level
CIM Model”, Journal of Manufacturing Systems, vol. 9, no. 2, pp. 116-128,1990.

[HARH 91] Harhalakis, G., Lin, C.P., Mark, L., and Muro, P., "Formal Representation,
Verification and Implementation of Rule Based INformation Systems for Integrated
Manufacturing (INSIM)”, Technical Report TR 91-19, Systems Research Center,
University of Maryland, College Park, 1991.

[HSU 87] Hsu, C., Angulo, C., Perry, A., and Rattner, L., "A Design Method for
Manufacturing Information Management”, Proceedings of Conference on Data and
Knouwledge Systems for Manufacturing and Engineering, Hartford, Connecticut,
pp. 93-102,1987.

[JENS 87] Jensen, K., “Colored Petri Nets”, Petri Nets: Central Models and Their Properties.
Advances in Petri Nets 1986, Part I. Proceedings of an Advanced Course, Bad
Honnef, 8-19. September 1986, pp. 248-299, Edited by G. Goos and J. Hartmanis.
Springer-Verlag Berlin Heidelberg 1987.

[LU 86] Lu, S.C.Y., ”Knowledge-Based Expert System: A New Horizon of Manufacturing
Automation”, Proceedings of Knowledge-Based Expert Systems for Manufacturing
in the Winter Annual Meeting of ASME, Anaheim, California, pp. 11-23,1986.

[MARK 87] Mark, L. and Roussopoulos, N., ”Operational Specification of Update
Dependencies”, Systems Research Center Technical Reprot No. SRC TR-87-37,
University of Maryland, 1987.

[MURA 89] Murata, T., "Petri Nets: Properties, Analysis and Applications”, Proceedings of
.The IEEE, vol. 77, no. 4, pp. 541-580, April 1989.

(Draft) Proceedings of the 3rd International Conference on Data and Knowledge Systems for Manufacturing and Engineering. 1992.

[PETE 81] Peterson, J.L., "Petri Net Theory and the Modeling of Systems”, Prentice Hall,
Englewood €liffs, New Jersey, 1981.

[SEPE 87] Sepehri, M., ”"Integrated Data Base for Computer Integrated Manufacturing”,
IEEE Circuits and Devices Magazine, pp. 48-54, March 1987.

	imple1.pdf
	imple2.pdf
	imple3.pdf
	imple4.pdf

