
7581,6��DQ�2EMHFW�2ULHQWHG�7UXQNLQJ�5DGLR�7HOHSKRQH�1HWZRUN
,QIRUPDWLRQ�6\VWHP
$Q�H[SHULHQFH�UHSRUW�

F.J. Zarazaga, J. Valiño, S. Comella, J. Nogueras, P. Muro-Medrano
Department of Computer Science and System Engineering

Centro Politécnico Superior, Universidad de Zaragoza
María de Luna 3, 50015 Zaragoza (Spain)

 {javy,juanv,scomella,prmuro@posta.unizar.es}
{http://diana.cps.unizar.es/iaaa}

$EVWUDFW
7KH� SDSHU� VKRZV� RXU� H[SHULHQFH� LQ� GHYHORSLQJ� D� WUXQNLQJ� UDGLRWHOHSKRQH� QHWZRUN

LQIRUPDWLRQ�V\VWHP�XVLQJ�REMHFW�RULHQWHG�WHFKQRORJLHV��7KH�GHYHORSHG�LQIRUPDWLRQ�V\VWHP�KDV
WKH�QHWZRUN�PDQDJHPHQW�UHVSRQVLELOLW\�DQG�LW�RIIHUV�D�FRPSOHWH�VHW�RI�XWLOLWLHV�WR�WKH�QHWZRUN
RSHUDWRU� WR� IDFLOLWDWH� LWV� ZRUN�� ,W� KDV� EHHQ� QHFHVVDU\� WR� EDODQFH� UHTXLUHPHQWV� IURP� WKH
PDQDJHPHQW� SRLQW� RI� YLHZ� �UHDO�WLPH� LQWHUDFWLRQ�� VWDWLVWLFV�� HWF���� UHTXLUHPHQWV� IURP� WKH
WHFKQLFDO� FRQQHFWLRQ�ZLWK� WKH�QHWZRUN� �GLIIHUHQW� WHFKQRORJLHV�� EXIIHULQJ� SUREOHPV�� HWF���� DQG
H[WUD� UHTXLUHPHQWV� LPSRVHG� E\� WKH� FOLHQW� �UHPRWH� PDQDJHPHQW� RSWLRQ�� HDV\� WR� SODWIRUP
PLJUDWLRQ��HWF����5HSUHVHQWDWLRQ�WHFKQLTXHV�EDVHG�RQ�REMHFW�PHWD�NQRZOHGJH�KDYH�EHHQ�XVHG�DV
D�SRZHUIXO�WRRO�WR�SURYLGH�D�IOH[LEOH�DQG�HDV\�WR�H[WHQG�PHFKDQLVP�WR�FRYHU�DSSOLFDWLRQ�GHVLJQ
DQG� LPSOHPHQWDWLRQ� SKDVHV�� 7KH� DGRSWHG� DUFKLWHFWXUH� DQG� WKH� PDLQ� FRPSRQHQWV� DQG� WKHLU
RUFKHVWUDWLRQ� DUH� GHVFULEHG�� 7KLV� SDSHU� LQFOXGHV� OHDUQHG� H[SHULHQFHV�� GHYHORSPHQW� FULWHULD�
SUREOHPV�DQG�FKRLFHV�RI�FRPPHUFLDO�SURGXFWV�

���7KH�SURMHFW�FRQWH[W

In recent years, competition among telecommunication companies has made necessary for
most of them to extend their business area. To give a good communication service it is not
enough, now it appears necessary to offer a set of added value services. In this sense, a power
and easy to manage network information system has its own business contribution. Object
oriented technology is gaining bigger interest within the developers of applications related with
the operation, management and administration computer controlled networks (see [3], [6], [9]
or [13] for relevant examples on this area), although this interest can be found in other domains
such as can be seen in [7].
This paper describes our experience in developing a trunking radiotelephone network
information system using object-oriented technologies. The system, named TRUNIS (an
abbreviation for TRUNking Information System), is a R&D project developed by collaboration
between the company Teltronic s.a. and IAAA research group from the Department of
Computer Science and System Engineering at the University of Zaragoza (Spain).

Teltronic s.a. is a Spanish company dedicated to produce, market and install

1 This work was partially supported by the &RPLVLyQ�,QWHUPLQLVWHULDO�GH�&LHQFLD�\�7HFQRORJtD (CICYT) of Spain

through the project TIC98-0587 and 7HOWURQLF s.a. trough the projects 95/0015 and 98/0131.

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

professional radio-communication systems. Their products have been installed in many
countries along Europe, Africa and South America. It is in direct competition, in trunking
networks, with big multinational companies like Motorola, Philips, Kenwood, Key, Tait, Fylde
Microsystems, Nokia, etc. The IAAA is a R&D group composed by professors, associated
engineers and undergraduate students from the college of engineering (industrial,
telecommunications and computing) at the University of Zaragoza (Spain). The IAAA work in
areas such as software engineering for information systems, object oriented and component
based systems, distributed systems and open geographic information systems. Object oriented
technologies have been adopted as the base of all works developed by the group, and
represents its most important “know how”.

TELTRONIC S.A. is specialising in the development of hardware radio components and its
corresponding embedded software. The development of a medium size information system
application, based on a PC/workstation, was out of the scope of its development interest. On
the other hand, the IAAA group had extensive experience in the involved technologies to
develop that kind of product. That was the context where the collaboration was established,
which was fomented by interesting public financial opportunities derived by the R&D
collaboration with Universities.

The rest of the paper is structured as follows. Next section provides a basic introduction to
trunking systems and its management. Section 3 shows the technologies and tools used within
this project. Section 4 describes the architectural design and its major components. Section 5
focuses on our experience with the use of object oriented technologies and related tools
involved the development of TRUNIS. This work ends with a conclusion section and the
project continuity in the future.

���,QWURGXFWLRQ�WR�WUXQNLQJ�V\VWHPV

Trunking has long been a part of the Public Safety and business side of radiotelephony. It is
based on the idea of offering more efficient use of a system repeaters and equipment. The term
"trunk" actually came from the telephone industry. When a phone call is placed, the call is sent
to a line where it is given the next available open line to its destination. This may happen
several times on a long-distance call or once on a local system. The same is true for radio
trunking.

An easier way to understand trunked radio is to think of it like standing in a line for a bank
teller inside the bank rather than driving into the drive-thru. In a drive-thru every one picks a
line for a specific teller machine. Some machines are used more than others and some are used
less. While on the inside, everyone must stand in one line and wait for a teller to become free
so that the customer can make the transaction. When that customer is gone, the teller is free to
take the next person in line. While on the outside, people are still stuck on the line waiting to
get to the next open spot in their particular line when there maybe 3 teller machines open in a
different line. In a trunking network, "tellers" are radio frequencies, "customers" are radio
terminals waiting for communication, "transactions" are calls, and the responsible of the co-
ordination of all the system is the Central Node Control Unit.

Figure 1 shows a typical trunking network infrastructure that is mainly composed by a
&HQWUDO�1RGH��&1� and a set of =RQH�%DVH�6WDWLRQV��=%6�. The NC�is in charge of the overall
network control and it is itself composed by a &HQWUDO�1RGH�&RQWURO�8QLW (CNC) and a set of
hardware components to establish the communication paths (communication cards,
commutation matrix, etc.). ZBSs are connected to the CN by links�and have to provide the
coverage for radio terminals. If a radio terminal is into a ZBS coverage, it could ask for a call,

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

the request is communicated to the CNC that decides if the communication could be
established.

L in k

Z o n e
B a s e

S ta t io n
C e n tra l

N o d e
C o n tro l

U n it

L in k

L in k

z o n e 1

z o n e 2

P A B X

A d m in is tra t io n
C o m p u te r

R e m o te A d m in is tra t io n
C o m p u te r

D a ta tra n s m is io n

Figure 1: Trunking network infrastructure

TRUNIS is the interface between the network and its operator, this person, or set of persons,
is who makes the supervision, control, maintenance and operation of a trunking network. It is
installed into the central administration computer that is connected to the network through the
CNC. A serial line is the physical link between them. This serial line could be a cable, a radio
modem, a telephone modem, etc. A remote administration computer can be connected to the
central administration computer via "point to point" modem connection, via Internet, etc. This
remote computer could provide the same management functionality than the administration
one. This remote access offers the opportunity to share the management work and allows to
make remote supervision and demonstrations of the system, even in other city or country.

In the development of the management application, two groups of requirements have been
identified:
• User services have their origin in the control, maintenance and operation of the trunking

network, and could be grouped into three sets with very different characteristics:
À Network infrastructure data and access
À Use information: statistic, fleet and communication element configuration, invoicing,

client configuration, etc.
À Information system administration: user management, backups, etc. End users could

be categorized and limited in its access to the application functionality.
• Requirements and constraints derived from the connection of TRUNIS with the trunking

network. As it has been explained above, TRUNIS is connected to the trunking network
through its CNC. This is an industrial PC (Pentium 133 MHz., with 4Mb RAM and 6Mb
HD) with MS-DOS version 6.20 and a main control program written in C language.
À There is only one point to communicate the network and its information system. This

is a computer serial port that is connected to the network via modem, “serial cable”,
radio link or others.

À Information coming from the network and going to the information system must be
integral and complete. This involves the design of a database to allow sharing the
information among different services offered by the information system. There is an
additional representation problem because the CNC uses a world representation
designed to minimize storage and maximize access speed and it has a high penalty in

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

complexity and understanding. On the other hand, the information system must
provide a data design with a high understanding level and low complexity. This is
because it must be designed to be closer to human operators (with maybe a low
technical preparation level), while CNC only "talks" with other hardware elements
(cards, PCs radio terminals, etc).

À The computer used to control the CNC has all its databases kept in memory in order to
minimize hard disk access and to be more efficient (trunking regulation establishes the
maximum time interval to answer to a communication request). This makes the buffer
capacity of this computer for historical information (callings, alarms, etc.) minimum
and it is necessary to transfer that information to TRUNIS databases all the time.

Furthermore, to avoid human interaction the system must do, automatically, a set of
periodical works (computer clock synchronisation, the transfer of network work data too
bigger to be kept by the CNC PC, etc). Other additional requirement is the capacity of the
system to be operated by more than one operator at the same time, using different consoles,
even in remote mode via Internet or by telephone access. Figure 2 gives an idea of the high
level functional architecture of the application.

Trunking
Net

Comunication server
Serial line

Database server

Administration client
Administration client

Remote administration client

Net monitor

Modem

Modem

7&3�,3

Figure 2: High level application structure

At the beginning, the system had to be platform and database server independent2. This
strong requirement was relaxed and transformed to "cheap to migrate". Actually, the
application is operating over a Microsoft NT operating system and the database server used is
Oracle. But migration to other platform or database server should be no traumatic and with
relative low time costs, this is because designs and implementations have been done having
that problem in mind and the use of reusable design methods (object oriented methods) and
languages (standard C++ and SQL-92) was fomented.

Finally, the client wants to "customize" the application in order to limit functionality so that
the system could be sell to their clients as different versions of the application with different
sets of capabilities.

���7HFKQRORJLHV�DQG�WRROV

Object oriented technologies have been the basis to succeed in the development of this
application: Object oriented methodologies have been used for analysis and design process,
and an object-oriented program has been selected for the implementation process. Analysis and
design have been done using OMT [8] with a personal extension to support class and attribute

2 In 1994, Java was a panacea that lived only in Sun research laboratories.

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

meta-information. Because of this extension, no commercial CASE application could be used
and diagrams had to be built using a drawing application named Visio (version 3.0 and 4.0).
Currently, as specification is changing during maintenance efforts, it is migrating to UML [1].

Since class and attribute meta-information is considered as one of the most powerful tools
used in this development process, a special library designed to support this kind of meta-
information has been used. This library is called�)DFHW� /LEUDU\ [12] and provides a strong
knowledge representation scheme, specially built to represent typical information systems
knowledge (data model information: attribute names, types, etc; GUI information:
appearances, value representation sizes, etc; database information: table names, column names,
etc.; ...). This design strategy based in the use of meta-knowledge facilitates that models
developed during analysis could be moved through different developing phases with large
similarities. The approach to use the same model during developing phases has been adopted
in a bigger extend by other authors like in [5].

The programming language selected to build the application is C++ [10]. It offers powerful
resources and many capabilities to use system libraries (GUI, database management systems
and communications) and source code developed in other projects.

In order to support object persistence,)DFHW� /LEUDU\ has an extension to provide a
transparent object persistence mechanism especially designed to allow database server
migration with minimum changes. This objective has been achieved limiting the number of
classes that know the database server, and using SQL-92 [2] as unique database query
language. To contrast this migration facility, two prototypes have been implemented, one using
Informix database engine (over Silicon Graphics machine, IRIX 5.x) and another using
Windows ODBC drivers (for ORACLE database). In the same way, to make a possible
platform migration easier, a commercial multi-platform GUI library has been used. After a
selection process where functionality and economic cost were considered, the final library
selected was Zapp version 3.0 (from Rogue Wave software).

The application is currently operative over Microsoft NT version 4.0. with Oracle as
database server. Initially, the application used Oracle workgroup server 7.3, but at present, last
release of the application uses either Oracle 8 server version 8.0 or Personal Oracle 8 version
8.0. This change of database version has been done because Oracle does not sell version 7
licenses of its database engines. The fact is that two of the currently operative installations use
Workgroup server version 7.3, and the other one uses Personal Oracle 8 version 8.0. The
access mechanism to the database selected was the use of a C++ precompiler as it is faster than
ODBC access mechanism. The pre-compiler used is Oracle Pro C/C++ version 2.2 (to access
to Workgroup server version 7.3) or version 8.0 (to access to Oracle 8 server and Personal
Oracle 8). The development has been done with Microsoft Visual C++ version 4.1. This
compiler and version was imposed by the database selection because Oracle Pro C/C++
guaranteed its code generation only for this compiler and version.

As could be seen on the next point, the application has been developed to work in a network
with different computers executing different functionality. Nevertheless, with an appropriate
configuration, all application could be executed in the same machine at the same time. This
machine should be a compatible PC with: Intel Pentium 133 MHz processor or upper, 64 Mb
of RAM, 1 GB hard disk, 1 free serial port (usually one is used by mouse). It is also required a
graphic card with enough capacity to give 16 colours for a 17" colour monitor with a minimum
resolution of 1152 x 864 pixels. This resolution is necessary since there are some windows
with a big amount of information and can not be properly shown with less resolution.

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

���$UFKLWHFWXUDO�DQG�FRPSRQHQW�GHVFULSWLRQ

In this section we are going to present the architectural design of the application developed.
This architecture is based on two major elements that are the concept of subapplication as
management functional component, and the object data model that works as conceptual
representation of the trunking network and its interactions.

�����$UFKLWHFWXUDO�GHVLJQ

During the development of this application, the first step was to design the architecture of
the system. This architecture provided the major elements to be developed, their functionality
and their relations among them.

1HW�0RQLWRU

'DWDEDVH
VHUYHU

Data

&RPXQLFDWLRQ
VHUYHU

68%$33/,&$7,216

Net control

General
configuration

Infraestructure
configuration

Comunication
element

configuration

Statistics

Maintenance

Client
configuration

Invoicing

Sistem
administration

Figure 3: Architectural design

Figure 3 shows the architectural design developed for the application in order to satisfy all
the requirements introduced before. The following elements can be identified:
• A database server: there must be only one database repository in order to have an integral

and complete data management. This repository works as a server of the rest of elements,
which work as clients of it. The database server is implemented using a commercial
database server (Oracle) and its corresponding clients. Over these clients, a set of classes
has been developed to offer an interface so near to the problem domain as possible.

• A communication server: this element is the only access to the trunking network in
accordance with the requirements. It works like a server providing the lowest layers (from
1 to 4 using OSI standard [11]) of the protocol used to communicate the network with the
application (this protocol was provided by Teltronic s.a., developed by their trunking team,
and it is the same used to communicate their computers inside the network). It is an
autonomous program, which captures a serial port and offers their services to clients via
socket connection (IP and port could be configured via init-file).

• A network monitor: this element is necessary to "listen" the network every time and to
execute automatic operations. Two programs compose the monitor. One of them is
responsible for "listening" permanently the network and keeping data coming from it into

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

the database. The other program is responsible for executing automatic operations. Both
are registered as an NT service too, but, while first starts as soon as the computer where it
is installed is switched on, the other is programming to be executed one day of the week at
a special hour both configured via init-file. These two programs work as clients of the
database server and of the communication server.

• A set of subapplications which configures the administration client and represents the
console for operator interaction with the information system (the concept of
"subapplication" is described in the next point). It consists of an executable specialising to
check the configuration of the application sold by Teltronic s.a. (see application
requirements) and to allow the execution, via tool bar or via menu, of the corresponding
subapplications, each of them is an autonomous executable program (see next section).

�����6XEDSSOLFDWLRQ�GHVLJQV
Administration client design is based on the concept of "subapplication". A subapplication

is an autonomous executable program that offers a set of functionality closely related. This
program could be executed only via the interface provided by the main application that works
as a subapplication shuttle.

Object from
object model

Persistence

GUI

Application
domain

Comunications

Object model

GUI

Facets

D
a
ta

b
a
se

cl
ie

n
t

Persistence

Windows for subaplication processes

Comunications

68%$33/,&$7,21

R
e

a
l tim

e
co

m
u

n
ica

tio
n

clie
n

t

C
o
m

u
n

ica
tio

n
clie

n
t

Figure 4: Subapplication scheme

Figure 4 shows the basic architecture of all subapplications. This architecture is supported
by a powerful knowledge representation scheme [12], which allows integration and
centralisation of the information system knowledge. Based on this kernel, some infrastructures
have been built in order to provide utilities of general interest for information systems
development: graphic user interface, database persistence and data transfer to the trunking
network. These utilities involve the design of new objects and services for each utility, and
new attributes specialized in those utilities. GUI infrastructure provides the necessary
mechanisms to build application windows allowing the access to the data model information.
The communications infrastructure role is to give appropriate tools to obtain the necessary
object information when the network provides this information. Persistence infrastructure has
the responsibility to provide objects with methods to manage their own persistence into a
relational database.

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

�����2EMHFW�GDWD�PRGHO
The object data model is the kernel of the application. It is integrated by all classes that

represent elements from a trunking network organized in three major hierarchies. One of them,
perhaps the most complex, represents the elements that could take part in a call inside the
trunking system (see Figure 5). Another is composed by classes that manage the application
administration (users, backups, etc.). And the third one is integrated by all classes connected
with invoicing and client management. There are other minor hierarchies and several relations
among classes from different hierarchies.

T r u n k i n g E l e m e n t

M o vi l T e r m i n a l

s u b s e t

P h o n e E l e m e n t

T r u n k i n g T e r m in a l

M o n i t o r

G r o u p

F l e e t

0 . . 7 0 0

1 . . 1

0 . . 21 . . 1

0 . . 9 9

1 . . 1

C o m u n i c a t o r

C a l l

0 . . *
1 . . 1

+ c a l l _ c a l l e r

0 . . *
+ c a l le r 1 . . 1 0 . . *

0 . . 1 + c a l l _ c a l le d
0 . . *+ c a l l e d

0 . . 1
0 .. *

0 .. 3

+ c a l l _ i n c l u d e d

+ i n c l u d e d

0 .. *

0 .. 3

+ g r o u p

+ fle e t

0 . . 9 9

1 . . 1

+ t e r m i n a l

+ fl e e t

0 . . 7 0 0

1 . . 1

+ m o n i t o r+ fl e e t
0 . . 21 . . 1

Figure 5: Object model sub-set

���5HODWHG�H[SHULHQFH

This was the most complex project our research group had faced up to in its beginnings.
This way, the results obtained have implied a remarkable improvement of our development
process as well as our technical experience. The related experience is summarized below.

7KH�XVH�RI�REMHFW�RULHQWHG�WHFKQRORJLHV
Object oriented technologies have been very useful in the development of this project, from

the beginning to the maintenance phase. During the first steps, objects allow us build a system
model understandable by Teltronic team, they did not know anything about objects, but they
could see their network in our diagrams. Object design has made the organisation of the
knowledge about the system, the division of the implementation work (up to 6 programmers
have been working at the same time), the realisation of the test and the integration of elements
easier. C++, as object oriented programming language, has offered a big set of capabilities to
organize source code, making programmers relocation and maintenance labours easier

)DFHWV�OLEUDULHV
Thanks to the facet libraries and the macros used to manage them, the coding task has been

remarkably improved. The programmer must only describe what it is shown in the design
model. For example, giving persistence to a class is so simple as the use of a set of macros
(implicitly facets library). These macros are used to declare this class as persistent and to
indicate the characteristics of the persistent attributes (data type, length, null values, unique...).
Once this job has done, the programmer is automatically provided with a set of methods to
interact with the database (load, save, update, delete, create...) as well as the basic methods to
access to the value of the attributes or relationships with other classes. As you can see, coding
is really easier now as it is almost a direct transcription of what you have done at design time.
This way, the programmer needs only to concentrate on the business logic of the application
avoiding tedious and repeatable tasks such as interaction with the database, get and set
methods for attributes and so on. It has made easier for new programmers to understand source
code, in conjunction with clear designs and well commented code.

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

3URJUDPPLQJ�ODQJXDJH�OLPLWDWLRQV
To implement facets library, some of the most advanced C++ features have been used, more

specifically, new standard language additions in template and member pointer areas. In some
cases, it has been problematic to "understand" these new features and to "make" the compiler
capable to support them. In this way, the extensive use of templates has made compiler time
very high (to compile the complete application could costs about 48 hours using a PC 233
MHz and 128 Mb RAM), even using precompiled headers.

3UREOHPV�ZLWK�FRPSLOHUV
Source code files have many structures like #if #else #endif to include source code

according to the C++ standard and the patched version which could be compiled by the
environment used. Initially, four compilers (Borland C++, Microsoft Visual C++, SGI C++
and gnu C++) were used in order to detect the origin of some problems found in execution
because it was no clear if problems have their origin in programmers or in compilers. It was
necessary to use those structures because different compilers have different problems.
Database server selection forced the use of Microsoft Visual C++ because C++ precompiler
tool generated compatible code only for this one. Many hours have been lost detecting and
solving compiler problems, and the exhaustive use of debug tools have been necessary.

3UREOHPV�ZLWK�*UDSKLF�8VHU�,QWHUIDFHV�OLEUDULHV
One of the most expensive processes was to select an appropriate GUI library. According to

initial requirements, the use of a multi-platform GUI library was decided in order to make the
migration process easier. Several libraries were considered: Ilog views, C++ views and Zapp.
The first one seemed to be the best option but it was rejected due to its expensive cost. The
second one was bought but when the real work began, its functionality (in multi-platform
services) was not enough for our requirements. Therefore, the final selection was Zapp.

Zapp is a GUI development library. It was chosen mainly by its multi-platform capabilities,
its flexible design and because it is not a whole system framework as MFCs, therefore it does
not determine any system architecture or deal with database interaction, system logic and so
on. Zapp provides developer with basic GUI classes and a small amount of higher level
classes. It also offers a graphic-developing tool, called Zapp Factory, which speeds up
developing process but generates a quite awkward code. Unfortunately, we have found some
problems using Zapp. Firstly, the library is difficult to mix with other class libraries such as
STL. Secondly, Zapp aimed to be used in addition to Zapp Factory. Instead, we have needed to
exploit every capability of Zapp using directly low level functions of the library in order to
integrate the graphical aspects of objects inside the facet structure and building window
hierarchies. For this reason, we had to face not well tested capacities of the library, and we
have found some very hard to find and unreported errors. Finally, the documentation provided
is not so complete .We have experienced this lack of clear documentation by developing
ourselves a service, which was found later in the library but it was no documented.

/HVVRQV�OHDUQHG
There exists a typical set of recommendations to the development of projects using object-

oriented technologies that is extensive documented in bibliography. We would like to add two
more lessons we have learned during the development of this project. On one side, we suggest
to be suspicious about commercial tools (compilers, libraries, etc.) capacity when new
technologies are involved. Test, test and test them. On the other side, when one project is
going to be an industrial product and not only a laboratory prototype, you should try to
minimize the risks of use new technologies by adding their functionality step by step. It is very
useful to encapsulate them in order to be able to check them separately from the rest of the
application by using black box tests and integration tests.

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

���&RQFOXVLRQV

In this work, the development of a trunking network information system using object-
oriented technologies, and the related experience with it, have been presented. We considered
the development of this application a medium size project. More than 350 classes have been
designed and implemented, including object data model (about 35 classes and 15 relations
between them), all subapplications, basic facet infrastructure, services for database access,
communications, GUI and print services, and general purpose (exceptions, strings). The team
responsible of the project development was composed of 9 persons (a maximum of 7 working
at the same time). With these characteristics, the use of object-oriented technologies and tools
has been one of the most important elements in the success of the development of the project.

Nowadays, this application is working in several trunking operative networks installed in
Alicante, Viladecans (Barcelona) and Gran Canaria (all in Spain). There are different
configurations of the same application, and the evolution of each one has been different. This
way, object oriented technologies allow us to make the maintenance of all of them easier as
they provide us with the necessary encapsulation mechanisms to change some application
aspects transparently to the rest. In the same way, the addition of new functionality is
currently the other line of work. The improvement work has two major development lines, one
is extending the invoicing and client configuration services in order to integrate them with the
network operator company business organisation, and the other is providing new services to
network clients like "mini" information allowing them to access to their "own" information.

As Brian Henderson-Sellers says in [4], object technology is still immature although
developing rapidly, in this way, the develop of a medium size application using object oriented
technologies has provided our research group with a very important "know-how" in the use of
them, their benefits and pitfalls. This knowledge is being applied in the development of new
projects and in teaching our students at the university.

���5HIHUHQFHV
[1] G.Booch, J.Rumbaugh, I.Jacobson���7KH�8QLILHG�0RGHOLQJ�/DQJXDJH�8VHU�*XLGH�, Addison-Wesley 1998.
[2] C.J.Date, H.Darwen, A guide to the SQL standard, Third Edition ; Addison-Wesley, 1993.
[3] EHPT, a company that develops software telecom management applications: http://www.ehpt.com/index.html
[4] B.Henderson-Sellers: "A book of Object-Oriented Knowledge. An introduction to Object-Oriented Software

Engineering", Prentice Hall 1997.
[5] R.B.Jackson, W.C.Giauque, J.V.Hansen: �&RQFHSWV� RI� VLQJOH�SDUDGLJP� REMHFW�RULHQWHG� GHYHORSPHQW�� ZLWK

DSSOLFDWLRQ� WR� D� PDQXIDFWXULQJ� LQIRUPDWLRQ� V\VWHP�. IEEE Transactions on Systems, Man and
Cybernetics. Pages: 583 - 598, Sept. 1996, Vol. 26, Issue: 5.

[6] C.Kroll: �2EMHFW� RULHQWHG� QHWZRUN� RSHUDWLRQ�� DGPLQLVWUDWLRQ� DQG� PDQDJHPHQW�. Proceedings of the IEEE
Symposium on Computers and Communications, 1995. Pages: 50 - 56.

[7] M.Missikoff: �$Q�REMHFW�RULHQWHG�DSSURDFK� WR�DQ�LQIRUPDWLRQ�DQG�GHFLVLRQ�VXSSRUW� V\VWHP� IRU�UDLOZD\� WUDIILF
FRQWURO�. Proceedings of the First International Conference on Knowledge-Based Intelligent Electronic
Systems 1997. KES ’97. Pages: 633 - 641 vol.2.

[8] J.Rumbaugh, M.Blaha, W.Premerlani, F.Eddy, W.Lorensen, �2EMHFW�2ULHQWHG�0RGHOLQJ�DQG�'HVLJQ�, Prentice
Hall, 1991.

[9] R.H.Stratman: �'HYHORSPHQW� RI� DQ� LQWHJUDWHG� QHWZRUN� PDQDJHU� IRU� KHWHURJHQHRXV� QHWZRUNV� XVLQJ� 26,
VWDQGDUGV�DQG�REMHFW�RULHQWHG�WHFKQLTXHV�. IEEE Journal on Selected Areas in Communications. Pages:
1110 - 1120, Aug. 1994, Vol. 12, Issue: 6.

[10] B.Stroustrup: ³7KH�&���/DQJXDJH��WKLUG�HGLWLRQ´, Addison-Wesley. 1997.
[11] A.S.Tanembaum: "&RPSXWHU�QHWZRUNV". Prentice-Hall 1996.
[12] J.Valiño, J.Zarazaga, S.Comella, J.Nogueras, P.Muro-Medrano: ³8WLOL]DFLyQ� GH� WpFQLFDV� GH� SURJUDPDFLyQ

EDVDGDV�HQ�IUDPHV�SDUD�LQFUHPHQWDU�OD�SRWHQFLD�GH�UHSUHVHQWDFLyQ�HQ�FODVHV�GH�&���SDUD�DSOLFDFLRQHV
GH�VLVWHPDV�GH�LQIRUPDFLyQ´. Proceedings of the CAEPIA’97. Málaga, Spain, Nov, 1997 (Spanish).

[13] S.Yamazaki, K.Kajihara, M.Ito, R.Yasuhara: "Object-Oriented Design of Telecommunication Software". IEEE
Software, January 1993.

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

Proceedings of the TOOLS 29: Technology of Object-Oriented Languages and Systems. 1999, p. 251-260

