(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

A Storage Model for Supporting Figures and
Other Artefacts in Scientific Libraries: the Case
Study of Invenio

Piotr Praczyk!2, Javier Nogueras-Iso?, Samuele Kaplun!, and Tibor Simko!

! CERN, Geneva, Switzerland
2 Universidad de Zaragoza, Zaragoza, Spain

Abstract. Current digital libraries for scholar publications are facing
new challenges to facilitate discovery and access to digital objects distinct
from the traditional full-text documents, e.g. figures, data sets or software
related to scientific developments.

This work presents an extension of the data storage model of Invenio, a
digital library platform developed at CERN. We concentrate on fulfilling
requirements arising while extending INSPIRE, the information resource
in High Energy Physics, with storage of figures and preservation of data
files on which publications are based.

Keywords: digital library, data preservation, data storage, metadata,
MARC, Invenio, INSPIRE

1 Introduction

Over recent years we observed rapid development of digital libraries and the
software allowing management, retrieval and preservation of data. This included
amassed efforts to increase the interoperability between different software plat-
forms by standardising data exchange formats and protocols involved in this
process [1]. The development of data-mining techniques allowed more extensive
usage of content stored in digital library systems. This includes the automatic
reasoning based on full texts of publications, but also the automatic discovery
of internal structure of documents and providing access and search with finer
granularity. The latter includes the interest in automatic extraction of figures
and tables ‘locked’ in scientific publications [2].

INSPIRE is a project aiming at constructing a digital library of all publi-
cations of High Energy Physics (HEP). INSPIRE is a successor of SPIRES [3]
database, created since 1970 at the Stanford Linear Accelerator Center (SLAC),
providing metadata about preprints. With the advent of WWW, a web inter-
face to the existing SPIRES resource was created, making SPIRES the first web
site in North America. Later, the birth of arXiv.org allowed SPIRES to provide
not only metadata, but also to display links to full-text documents. These two
services are often perceived by users as a single system [3], SPIRES providing a
search engine based on the metadata and being equivalent to a paper-catalogue

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

in libraries, and arXiv.org being a storage of articles linked from search results.
The SPIRES software written in mid 1970s was still running at the beginning
of the XXI century, becoming increasingly difficult to maintain. In the era of
content-based search engines like Google and user-oriented services, metadata-
only based search engines stopped providing the best available service.

The INSPIRE project arose as a collaboration of SPIRES database contain-
ing manually curated, high quality records and the Invenio [4] software platform
for digital library repository, developed at CERN. INSPIRE, being a service
based on a more modern software platform, provides searches based not only
on metadata but also on full text. Later developments concentrate on creation
of intelligent content-aware tools allowing automatic keywording of records, dis-
ambiguation of authors having similar names, or storage and search of figures.
INSPIRE serves a large community of users consisting of the researchers in
high-energy physics. Content of INSPIRE comes from various sources. The main
corpus of data is being harvested from different digital libraries using the OAI-
PMH [5] protocol or obtained directly from publishers. This data is then auto-
matically improved and if necessary, manually curated. INSPIRE also enables
its content to be harvested. These characteristics make INSPIRE an example of
Very Large Digital Library [6].

One of the challenges that INSPIRE faces during its development is the
storage of different artefacts that are not publications but that are closely related
to the publication process. An example of such an artefact is a data file or a
software code of a simulation leading to the discovery described in the scientific
paper. Because of a lack of standard platform, this type of information is usually
either published on private websites by authors, or not published at all. At the
same time, data files have great value for scientists wanting to reproduce results
of their colleagues or to perform similar calculations.

Complete preservation of data artefacts is a very complex process. In this
paper we concentrate only on the part of establishing infrastructure for storing
custom data objects inside the digital library and on providing necessary APIs
to different parts of the system. We omit discussion of all issues connected with
the possibility of reusing preserved custom data in the future. These aspects are
very important, but not dependent on the underlying data model. There exists
extensive research addressing these problems [7-9]. The data model implemented
in the current version of Invenio, although flexible, has some intrinsic limitations
that lead to proposed extensions that would satisfy the requirements for a more
general data artefact storage.

The paper is structured as follows. In Section 2 we discuss the current storage
system of Invenio. Section 3 describes new requirements that cannot be satis-
fied by the existing system. In Section 4 we describe the new data model that
is backwards compatible with the existing storage system and allows for new
use cases. Later in Section 5 we discuss issues of uploading data in Invenio and
the interoperability between Invenio installation and other digital libraries with
respect to the exchange of data objects. Finally, in Section 6 we briefly com-

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

pare our work with other digital library systems and in Section 7 we present
conclusions and outlook for the future work.

2 The current storage and description model

The Invenio subsystem responsible for managing documents is split into three
layers. Data model varies between the end-user view, the API (Application Pro-
gramming Interface) layer and the data storage layer. The description provided
in this section has been prepared according to the data model available at the
APT level.

Application layer

Main e(s):

8 0101431
™ 01010310502 1151101 208

Additional Fie(s):

8 0101431661

| LT ——
<<Python + JavaScript> et <<PY\5\}IlglI)I ;1{2::5: Pz
Web interface g (administration) <<Python>>
Users Manual figures Con;ma;lfd Line
Records | 2<Ho" e

Middleware e :

<<Python>> i <<Python>> |a*"
layer Records and Objects mibeched [Y
| 4 Management <<Python>>
<<Python + C>> Logical model & ea
Search Engine — PRES Python>> <<Python>>
BibUpload BibIndex

Storage L
layer -

-
<<MySQL>>
Search indexes

[
<<Andrew File System>>
Content of objects

Fig. 1. Multi-layered architecture of Invenio.

Every bibliographic record can have a set a documents attached to it. The
view presented to the end user is organised in a tree structure with roots corre-
sponding to particular abstract documents, nodes aggregating available versions,
and versions aggregating available formats for the given version.

On the API level, versions do not have status of separate entities. The doc-
ument is an object having two dimensions: version and format. These two pa-
rameters can be provided by the end user in order to obtain a particular file
instance. If they are not specified, the newest version is retrieved.

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

The storage layer utilises a database and the file system. Those entities from
the API model that require remembering additional data associated with them
are stored in the database. Entities that are simple enough are stored directly
in the file system.

The data model currently used by Invenio concentrates on document objects
related to bibliographic records. This approach carries several consequences. All
the user-visible metadata is stored in MARC format representing the biblio-
graphic record. While one bibliographic record can reference many documents, a
single document cannot be attached to multiple bibliographic records. Figure 2
depicts relations between entities appearing in Invenio when dealing with the
storage of attached documents.

BibRecord
+recid BibRecDocs
1 associated - -
Record +list_bibdocs (doctype)

+get_bibdoc(docname)
+add_bibdoc{dictype,docname,never_fail)
+add_new_file(fullpath,docname, format, (...))

BibDoc +(...)

* | associated
Docs

+more_info
+name
+get_file(format,version)
+get_latest_version()

+get_recid()
+get_id()
+(...)
1 | document BibdocMorelnfo
+ | file +flush()
+set_flag(flagname,format,version)
BibDocFile +has_flag(flagname, format,version)
+get_flags(format,version)
+format +unset_flag(flagname, format,version)
+get_version() +(...)
+get_content()
+(...)

Fig. 2. Data model currently used in Invenio.

BibDoc is a class representing document at the most abstract level. It is
agnostic to the concrete encoding of the files representing an object. In the case
of fulltext representation, a BibDoc instance represents one document regardless
of whether it is encoded in PDF or Postscript formats or as a text file. The class
is capable of representing the document in different versions, allowing selective
access to them.

BibDoc allows storage of additional pieces of information that should not be
presented in the MARC record of the publication. This includes different flags
used by Invenio software internally. Additional data is stored in an internally-
managed Morelnfo instance. Morelnfo has a dictionary structure and is serialised
and stored in a BLOB field of the database table representing documents. An
example of the data stored in Morelnfo is a flag marking the document as ‘hid-

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

den’. Documents having this flag are not displayed in the MARC representation
of a record, but they can be accessed and processed internally. The BibDoc API
does not allow accessing the Morelnfo dictionary freely, but rather provides sep-
arate methods for modifying different types of properties stored there. BibDoc
instances can be identified by the control number of the record to which they
are attached, and a name that has to be unique within the scope of the record.
It is assumed that exactly one connection to a record will exist for each BibDoc.
BibDocFile is a class representing the concrete representation of a document.
Each of its instances encodes a particular format and version. The notion of
format is related to the ordinary file format, though it extends it. Besides the
main format type (such as jpg or pdf) it is possible to specify a ‘derived format’ or
a ‘sub-format’ as an arbitrary string that is useful for example to store the same
master graphical file in different derived resolutions. In this case, a document
will have more files with the same format and different sub-formats.
BibRecDocs is a class providing an interface to retrieve documents associated
with a particular record. An instance of this class can be constructed by provid-
ing the control number of the bibliographic record. Such an instance provides
methods manipulating BibDoc instances representing particular documents.

3 Need for a new storage structure

As mentioned in the introduction, we concentrate on the following use cases:
(i) preserving scientific results and data files; (ii) storing figures, notably in
situations where the same data object is reused by multiple bibliographic records.

The implementation of these two use cases implies managing not only bibli-
ographical records but also custom objects as first-class citizens in the Invenio
data ecosystem. This includes providing means of storing, identifying and ac-
cessing objects without reference to records to which they are attached.

When translating to the lower level, these requirements become:

1. Storing standalone objects not attached to records.

2. Assigning unique persistent identifiers to objects.

3. Allowing to establish relations between custom objects.

4. Attaching objects to possibly many records rather than exactly one.

Currently, the documents are assigned a unique identifier by Invenio, al-
though it is not visible outside of the implementation layer. Satisfying the second
listed requirement can be done simply by making the existing mechanism more
prominent. Other requirements require deeper modifications.

In order to allow storage of different types of objects, the storage system
should be as flexible as possible, allowing the storage of completely custom meta-
data. Because of its structure of a tree with a maximal depth of two, the MARC
format is neither very effective nor natural as a format for describing non-record
objects.

The use case of figures as a specific version of attaching custom objects may
be considered as a useful testing scenario for the metadata organisation. Basic

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

metadata elements that describe figure include: caption, text inside figure, exact
location of figure and its caption within the fulltext document, fulltext document
from which the figure has been extracted, list of references to the figure from the
text of the article, or the text present inside the figure itself. This list is not closed
and can grow in the future when methods of treating figures will progress. Some
of possible future metadata elements include: type of figure (plot, photograph,
diagram), information about quantities represented on axis and scales. We can
also store links to the data used to create the plot, which might exist as a different
object stored in the system.

4 Proposal for an extension of the storage model

Figure 4 depicts the proposed new structure of data organisation inside Invenio.
In order to reduce the need for modifications on the way Invenio treats records,
the model extends entities known from the current implementation.

BibRecord Moreinfo BibRecObjects
The same as

* | associated +serialize() BibRecDocs in

BibObjectAttachment Records +set (namespace, key, value) the old model
........... +get (namespace, key)
+function , | associated
Objects
. BibObject BibVersion BibFile
:ﬁ;;:_lnfo: MoreInfo 1 + [+more_info: MoreInfo |1 + +get_bibdocid()
- - list_formats() <> +get:fo rmat ()
+get_version(version_number) +get_file(format) version file +get_subformat()

+list_versions() object versi

+get_latest_version() :g:t_:;szzgormat()
+get_id() | get_:
T

+get_version()

+get_recid()
BibRelation +get_content()
+more_info: MoreInfo
+type
BibFulltextDoc BibFigure BibDataObject :
oo} +get_caption() BibFileRelation
D 9ot Tulitontl) +more_info: MoreInfo

+type

Fig. 3. UML diagram of the proposed data model.

The BibObject class is equivalent to the old BibDoc class. The name change
emphasises the usage of the entity to represent arbitrary objects. In the new
model, BibObject instances allow direct access to a more general Morelnfo object
resigning from managing every type of information with dedicated methods. The
type property of the link between the object and the bibliographic record is no
more promoted to property of BibObject instances.

BibObjects are still identified by unique names on the level of the record.
However, as many records may reference the same document using different
names, this information is no more an attribute of the BibObject instance. In
the proposed model, the name of a document inside a record has been shifted
to the relation between object and the bibliographical record. Instead of using

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

a name to identify documents, a persistent and unique identifier in the scope of
an Invenio installation is assigned to each custom object.

Currently, many aspects of the BibDoc class are oriented towards dealing with
full text documents. In the new model, a similar specialisation of class behaviour
may be achieved by permitting subclassing of the BibObject class. When creating
an instance representing a document, a type property might be read and used
to instantiate an appropriate subclass. Subclasses could be provided using the
Invenio plug-in system.

BibObjectAttachment class is an association class representing all properties
of the link between an object and a bibliographical record. The instances of this
class store information about the function under which the object is attached to
the record. As aforementioned, also a unique name inside a record is stored.

BibRecObjects is an interface similar to BibRecDocs. Instead of retrieving Bi-
bObject instances, each BibRecObjects instance provides an interface to retrieve
instances of BibObjectAttachment. Previously, every BibDoc could be retrieved
using an instance of BibRecDocs. Now it is not possible because there may exist
objects that are not associated with any record.

In order to provide a more general metadata storage system, Morelnfo in-
stances can be attached to more elements of the structure. Because of this, the
BibVersion entity has been introduced. The BibObject class provides access to
a collection of its versions. Each version provides access to the BibDocFiles that
behave similarly to the old scheme, but in addition it provides access to the
Morelnfo data field. Besides the above advantages, the explicit treatment of ver-
sions is more uniform with the mechanism used by Invenio to communicate the
structure of attached documents to end users.

BibRelation is an entity modelling the concept of generic relations between
documents. This relation is established between particular versions of docu-
ments. The relation remembers, and contains information about, its type, source
and target BibObject versions, and Morelnfo. Each BibObject instance provides
an APT allowing to retrieve its incoming and outgoing relations. BibRelations are
useful to model, for instance, that one document has been derived from another.

The structure of Morelnfo has been extended in the new model. Many In-
venio modules might need to store different pieces of information related to the
same object. This might happen for example when a module processing figures
needs to store some portions of metadata and a module dealing with access and
copyright control needs to do the same. In order to avoid name clashes, the
dictionary structure has been extended by name spaces. In practice, this means
that the dictionary has been equipped with an additional level. Each module
has access to one name space which should be characteristic for the module.
Inside this name space, arbitrary key-value pairs can be stored. Keys should be
encoded as strings, but values can be arbitrary cPickle? serialisable objects. If
two different modules want to save data using the same key, the conflict will
be avoided because they belong to different name spaces. The low-level storage
of Morelnfo can be implemented in several manners. As long as the amount of

3 http://docs.python.org/library /pickle.html

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

data stored inside one structure is small, the current solution using the seriali-
sation and storage inside a BLOB field of a database is efficient. This solution
may become too slow if the amount of metadata grows considerably. It is also
more difficult to index data stored in Morelnfo BLOB fields implemented in
this manner. The indexing of metadata fields may be simplified by providing
derived logical fields calculated based on the data environment of the record. An
alternative implementation could involve the use of NoSQL technologies such as
MongoDB [10]. Although this solution seems to be suitable for managing data
without known schema, yet additional software dependencies would be imposed
on Invenio.

The interface described in this section does not guarantee that every object
will correspond to at most one instance of BibObject class. This would be difficult
to achieve, because an Invenio installation may be distributed across multiple
computing nodes. When an instance is created, it reflects the state of the object
at the moment of instance creation. All the modifications to objects have to
be explicitly saved using appropriate flush functions. This is not a problem as
long as all the data modifications are performed by a special bibliographic task
(BibUpload) that is executed in a serial way by a dedicated queuing service
(BibSched).

In the case of figures, an abstract figure can be stored as an instance of Bi-
bObject. Particular formats, like PNG or SVG should be stored as BibFiles. If
a figure was extracted from the fulltext of the document, a BibRelation should
be established between a particular version of BibObject representing the figure
and a particular version of BibObject representing the fulltext. When a fulltext
document changes, figures extracted from it may change their location, which
indicates that certain types of metadata should be stored together with rep-
resentations of BibRelation. This metadata includes: the location inside of the
document, the location of the caption, the caption or text references.

Certain types of metadata are properties of the object itself and should be
stored either in Morelnfo associated with BibObject directly or in Morelnfo of a
particular BibVersion. These portions of metadata contain text extracted from
the figure but also all the possible future metadata elements such as types of
physical quantities described by the plot. Additionally, the links to the objects
representing the data underlying the figure should be stored in the association
with BibObject instances.

5 Importing and exporting data

5.1 Current extensions to MARC format supporting uploading of
attachments

In Invenio, metadata records are represented internally in MARCXML?* format.
MARCXML is also used as primary format for importing information. Storing
data objects transcends the capabilities of MARC.

* http://www.loc.gov/standards/marcxml/

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

In order to insert data in a consistent manner, the use of MARC had been
extended in Invenio by a custom artificial MARC field called FFT (Fulltext File
Transfer) which allows specifying information about external data to be attached
to the record. Table 5.1 shows the complete list of subfields of an FFT field and
explains their usage.

code|description
$a|location of the docfile to upload (a filesystem path or a URL)
$n|docfile name (if not set, deduced from $a)
$mnew desired docfile name (used for renaming files)
$t|docfile type (e.g. Main, Additional)
$d|docfile description
$f|format (if not set, deduced from $a)
$z|comment
$r|restriction (used only when deleting or reverting files)
$v|version (used only when deleting or reverting files)
$x|url/path for an icon

Table 1. Custom FFT MARC field and its subfields.

The data uploading process is in Invenio managed by a special daemon called
BibUpload. When an FFT field is encountered during the uploading process, it
is interpreted instead of being directly saved in the database like it is the case
with regular MARC fields.

The $a subfield encodes the location of the file to be uploaded. BibUpload
reads the content of this subfield and transfers the referred file into internal
Invenio storage system. Other FFT subfields are also read and used to build
instances of classes described in Section 2. These objects are also moved to
the persistent storage. Subsequently, an occurrence of 856 field® containing a
persistent link to the file inside Invenio is created. Subfields of the 856 field are
populated using the content from some subfields of FFT.

The described schema encounters a number of limitations with new data
needs: for example, the upload of arbitrarily structured data to be uploaded to
Morelnfo dictionaries is difficult in MARC, and the current syntax does not per-
mit creating links between already existing BibDocs and bibliographic records.

The described model allows several different scenarios of attaching objects.
We can either create completely standalone objects and attach them to multiple
records, or we can also create a single MARC record describing the object and
referencing an underlying BibObject. The way of attaching objects can be decided
together with details of the MARC format.

In subsection 5.2 we describe a METS-based format that could be adopted to
upload data objects. Currently the upload using this format is not implemented,
because for the primary use case of INSPIRE it is enough to use extended current
FFT syntax allowing to upload serialised entities of the proposed data model.

® http://www.oclc.org/bibformats/es/8xx/856.shtm

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

5.2 Uploading objects with new METS-based format

As described in the previous section, the syntax provided by MARC and ex-
tended with the FFT tag is not sufficient to allow the upload of standalone
objects and relations between them. This creates a need for more expressive lan-
guage. METS is an XML-based standard [11] for describing structured objects
and their metadata. For the purposes of Invenio we can use a customised subset
of METS reflecting internal data structures. The METS input can be processed
by the uploading daemon along with the existing MARC input. In this scenario,
the distinction between uploading publication metadata and objects preserved
in Invenio becomes much clearer. At the same time, the FFT syntax remains
intact with a different understanding as being a syntactic sugar for more gen-
eral METS description. Internally, FFT tags can be translated to corresponding

METS.
<structMap>
<!— uploading new object —>

<div type="BibObject” id="tmp:NewObjectl”>
<div type="version” id="tmp:NewObjectl:newVersion’

dmid="identifier_of _metadata”>

<fptr ... />
<fptr ... />
</div>
</div>
<!— wuploading relation between new version of NewObject and

existing object —>
<structLink xlink:from="tmp:NewObjectl:newVersion’
xlink:to="0bjld:232314:3"

xlink:arcrole="is_extracted_from”
dmid="link .to_metadata_in_serialised _.moreinfo.” />
<!— establishing relation between two existing objects —>

<structLink xlink:from="0bjld:2334234:5"
xlink:to="0bjld:232314:6"

xlink:arcrole="is_extracted_from’
dmid="link _to_metadata_in_serialised _moreinfo.” />

</structMap>

Fig. 4. Example of a METS structural map section describing the upload of one new
object and establishing its relation with an existing object.

A full description of the METS format can be found in [11]. METS is struc-
tured in different sections. From the point of view of our use case, the sections
of METS representation that are the most important are descriptive metadata,

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

files section and structural map. The section describing files would allow Invenio
daemon to locate files scheduled to be uploaded in the local file system. The
descriptive metadata section could provide real metadata of the uploaded ob-
ject. This metadata might be encoded in one of metadata description formats
(MODS, MARC or some custom format, serialised MoreInfo dictionary). The
structural map section is the most interesting from the point of view of uploading
data. We can use div elements to encode entities of the proposed Invenio data
model. The div elements are used to establish a hierarchical structure within
described digital object.

Figure 5.2 depicts a sample structural map section of an input METS file.
Every top-level division describes a BibObject. If the identifier is provided, the
description can be used to update an existing entity. If the identifier is not
provided, or if it is not present in the system, a new object should be created.

A BibObject division should contain a subdivision describing a particular
version of the document. The identifiers of versions are constructed by concate-
nating the identifier of the BibObject and the number of the version. Inside every
version div, we can specify references to particular files forming part of it.

Every object in the hierarchy may be linked to an entity from the descriptive
metadata section. This description will be encoded inside the Morelnfo field.

6 Related work

In this section we review several existing approaches to storing objects in digital
libraries and discuss connections and differences with respect to our proposal for
the Invenio model.

DSpace [12] is an open-source platform for institutional repositories. The data
model of DSpace emphasises the usage of Dublin Core for describing all pos-
sible types of resources, while Invenio is built around MARC for bibliographical
records. Our proposed data model allows more flexibility in the case of custom
objects, because it does not assume any particular metadata model, only defines
data access interfaces and imposes very basic requirements on stored data types.
This is particularly important in large systems consisting of many modules hav-
ing different data requirements, such as INSPIRE. Different modules can treat
data differently and store different types of metadata fields.

Another feature of the DSpace approach is that it allows describing the inter-
nal structure of documents and methods of building objects from separate data
streams. The Invenio model also allows describing relations between objects for
construction of more complex objects, but only on a level higher than the data
model.

OpenDLib [13] is a modular repository service intended to be used as a
building block for digital library systems. The DoMDL data-model proposed
in the solution is very general and makes few assumptions about the nature of
handled documents [13]. However, the extended data model of Invenio has been

S http://dublincore.org

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

designed to meet more specific requirements of storing figures and data behind
articles. Some notions of the DoMDL model, for example View, are not necessary
as referring to the internal structure of the document and are completely omitted
in our work.

Flexible and Extensible Digital Object and Repository Architecture (FE-
DORA) [14] is a standard for describing digital objects. The data model used
in Invenio is much simpler, not going in the direction of objects composed of
many parts stored as separate content streams. On the other hand, FEDORA
data model does not define the notion of an object version, which is crucial for
application in INSPIRE.

In summary, the existing storage systems concentrate on managing biblio-
graphic materials having complicated internal structures. For instance, storing
scanned pages of publications separately and making the data model to describe
the method of assembling the whole publication from parts. However, in the case
of INSPIRE, this type of use case does not exist as the data is stored primarily
in atomic, consistent PDF documents. The difficulty that INSPIRE is facing
consists of storing additional materials complementary to publications, remem-
bering relations between them and metadata associated with all these entities.
Therefore the model proposed in this work extends the existing implementa-
tion in Invenio to include minimal modifications that increase the flexibility to
incorporate different digital objects associated with publications.

7 Conclusions

In this paper we have proposed a new model for the storage of custom objects
inside Invenio. It enables to manage figures, data files, software source code, and
other data artefacts that may be associated to existing publications or that may
exit independently. Proposed flexible infrastructure facilitates development of
new applications for searching and accessing digital objects.

There are several issues that must be addressed during development of the
proposed model:

1. The first issue involves deciding if the data should be stored in a database or
partially in the file system. The underlying database could follow a relational
model or be a key-value store”.

2. The second issue is more complex and relates to the integration of extended
objects with the rest of the Invenio platform. The integration of custom
object model with Invenio requires to allow searching for custom objects and
displaying information about objects. This can be achieved either by creating
small, almost empty MARC records that would point to objects, reusing
parts of current record facilities, or by providing splash pages rendering
information directly from Morelnfo structures.

3. The third issue is connected to the need of assigning Digital Object Identifiers
(DOI) to stored data objects. These identifiers should store the persistent
state of a data object, allowing to manage a particular version of an object.

" http://en.wikipedia.org/wiki/NoSQL#Key-value_store

(Draft) Proceedings of the Fourth Workshop on Very Large Digital Libraries (VLDL 2011), Berlin, Germany, September 29th 2011. 2011

Acknowledgements

We would like to thank Salvatore Mele and the whole INSPIRE team for their
comments and insights. This work has been partially supported by the Spanish
Government through the project TIN2009-10971.

References

1. Rebecca Guenther and Sally McCallum. New Metadata Standards for Digital
Resources: MODS and METS. Bulletin of the American Society for Information
Science and Technology, 29(2):12-15, 2003. ISSN 1550-8366. URL http://dx.
doi.org/10.1002/bult.268.

2. Saurabh Kataria, William Browuer, Prasenjit Mitra, and C. Lee Giles. Automatic
extraction of data points and text blocks from 2-dimensional plots in digital doc-
uments. In Proceedings of the 23rd national conference on Artificial intelligence -
Volume 2, pages 1169-1174. AAAI Press, 2008. ISBN 978-1-57735-368-3.

3. Anne Gentil-Beccot, Salvatore Mele, Annette Holtkamp, Heath B O’Connell, and
Travis C Brooks. Information Resources in High-Energy Physics: Surveying the
Present Landscape and Charting the Future Course. oai:cds.cern.ch:1099955. J.
Am. Soc. Inf. Sci. Technol., 60(arXiv:0804.2701. CERN-OPEN-2008-010. DESY-
08-040. DESY-2008-040. FERMILAB-PUB-08-077-BSS. SLAC-PUB-13199. 1):
150-160. 27 p, Apr 2008.

4. Jerome Caffaro and Samuele Kaplun. Invenio: A Modern Digital Library for
Grey Literature. oai:cds.cern.ch:1312678. Technical Report CERN-OPEN-2010-
027, CERN, Geneva, Dec 2010.

5. Herbert Van de Sompel, Michael L. Nelson, Carl Lagoze, and Simeon Warner.
Resource Harvesting within the OAI-PMH Framework. D-Lib Magazine, 10(12),
2004. ISSN 1082-9873.

6. Paolo Manghi Yannis Ioannidis and Pasquale Pagano. Report of the Second Work-
shop on Very Large Digital Libraries VLDL 2009. D-Lib Magazine, 15(11/12).

7. André G. Holzner, Peter Igo-Kemenes, and Salvatore Mele. First results from
the PARSE.Insight project: HEP survey on data preservation, re-use and (open)
access. CoRR, abs/0906.0485, 2009.

8. Richard Mount et al. Data Preservation in High Energy Physics. 2009.

9. Margaret Hedstorm. Digital Preservation: A Time Bomb for Digital Libraries.
Computers and the Humanities, 31:189-202, 1998.

10. Kyle Banker. MongoDB in Action - A document database for the modern web.
Manning, 2011. 375 pp.

11. Digital Library Federation. METS - Metadata Encoding and Transmission Stan-
dard: Primer and reference manual. 2010.

12. Robert Tansley, Mick Bass, David Stuve, Margret Branchofsky, Daniel Chudnov,
Greg McClellan, and MacKenzie Smith. The DSpace Institutional Digital Repos-
itory System: Current Functionality.

13. Donatella Castelli and Pasquale Pagano. A Flexible Repository Service The
OpenDLib Solution. VWF proceedings, 2002.

14. Sandra Payette and Carl Lagoze. Flexible and Extensible Digital Object and
Repository Architecture (FEDORA). ECDL ’98, LNCS, 1513:49-59, 1998.

