
Behaviour-driven development applied to the
conformance testing of INSPIRE Web services

Francisco J. Lopez-Pellicer, Miguel Ángel Latre, Javier Nogueras-Iso, Jesús
Barrera and F. Javier Zarazaga-Soria

Abstract The implementation of the INSPIRE directive requires to check the
conformity of a large number of network services with the implementing rules of
INSPIRE. The evaluation whether a service is fully conformant with INSPIRE is
complex and requires the use of specialized testing tools that should report how
verification has been made and should identify non-conformances. The use of the-
se tools requires a high degree of technical knowledge. This fact makes very diffi-
cult for non-technical stakeholders (end users, managers, domain experts, etc.) to
participate effectively in conformance testing, hinders stakeholders understanding
of the causes and consequences of non-conformant results and may cause in some
stakeholders disinterest in conformance testing. This work explores the suitability
of a behaviour-driven development (BDD) approach to the conformance testing of
OGC Web services in the context of the INSPIRE directive. BDD emphasizes the
participation of non-technical parties in the design of acceptance tests by means of
automatable abstract tests expressed in a human readable format. Using this idea
as base, this work describes a BDD based workflow to derive abstract test suites
and executable test suites from INSPIRE implementation requirements that can be
written in the language used by non-technical stakeholders. This work also anal-
yses if BDD and popular BDD tools, such as Gherkin and Cucumber, are compat-
ible with ISO 19105:2000 testing methodology. As demonstration, we present an
online conformance tool for INSPIRE View and Discovery services that executes
BDD test suites.

Francisco J. Lopez-Pellicer
Universidad Zaragoza, Zaragoza, Spain, e-mail: fjlopez@unizar.es

Miguel Ángel Latre
Universidad Zaragoza, Zaragoza, Spain, e-mail: latre@unizar.es

Javier Nogueras-Iso
Universidad Zaragoza, Zaragoza, Spain, e-mail: jnog@unizar.es

Jesús Barrera
GeoSpatiumLab, Zaragoza, Spain, e-mail: jesusb@geoslab.es

F Javier Zarazaga-Soria
Universidad Zaragoza, Zaragoza, Spain, e-mail: javy@unizar.es

2 Lopez-Pellicer et al.

1 Introduction

The implementation of the INSPIRE directive must undergo the implementation
of a software testing infrastructure to verify the conformance of Web based Geo-
graphic Information (GI) services with the implementing rules of INSPIRE on in-
teroperability. Some authors, such as Bertolino (2007), describe software testing
as a task “ad hoc, expensive and unpredictably effective”. In the opinion of Can-
fora and Di Penta (2009), software testing is even more costly and risky when ser-
vices are involved. INSPIRE stakeholders are aware that conformance testing
tools for INSPIRE Web services are necessary (Bernard et al. 2005). For example,
the ACE-GIS testing suite is one of the earliest examples (Esbrí et al. 2004). How-
ever, it is really very difficult to ensure an effective participation of non-technical
stakeholders (end users, managers, domain experts, etc.) in the conformance test-
ing process due to its inherent complexity. A relevant symptom is that available
INPIRE tools that automate total or partially such process (e.g. GDI-DE Test suite
(Hogrebe 2012), INSPIRE Metadata Validator (JRC IES/SDI Unit 2011), NeoGeo
WMS INSPIRE Tester (Chartier 2011)) are targeted to technically skilled end-
users with deep knowledge of UML models and XML processing tools (testers,
developers, Web services experts, etc.).

This work focuses on the suitability of a behaviour-driven development (BDD)
approach to the conformance testing of Web based GI services against the re-
quirements of INSPIRE stakeholders. These requirements are embodied in the
documents that define the technical guidance for the implementation of INSPIRE
Network Services (European Commission 2013). In Software Engineering, BDD
is a lightweight and non-formal model-based software development process in
which software developers and domain experts collaborate in developing a human
readable model of a system for acceptance tests (North 2007).

The main contributions of this paper are an analysis of the suitability of BDD
techniques and tools for INSPIRE conformance testing, and the presentation of an
application that implements such approach. To do so, we first discuss in section 2
existing approaches to test the conformance of Web services applicable to Web
based GI services. Next, in section 3, we present how BDD can be applied to
INSPIRE conformance testing, and, in section 4, we confront the BDD approach
against the ISO 19105:2000 testing methodology identifying similarities and dif-
ferences. Following, we present in section 5 an online test execution application
for INSPIRE View and Discovery Services based on BDD. In section 6, we dis-
cuss the use of BDD for conformance testing of Web-based GI services. We con-
clude with some remarks on the use of a BDD approach for conformance testing
of Web based GI services.

Behaviour-driven development applied to the conformance testing of INSPIRE Web services 3

2 Related works

Conformance testing is the process to determine the extent to which a product or
system conforms to the requirements of a specification with the aid of testing
(Gray et al. 2010). It is acknowledged in the GI domain that the availability of
conformance tests for data, metadata and services promotes and eases the adoption
of interoperability initiatives (Nebert et al. 2007). Conformance testing for data
and metadata often focuses on syntactic and semantic validation against schemas
and rules. There are available many works about conformance testing for data and
metadata in very different scenarios (e.g. domain conformance (Martirano 2013),
online validation tool (JRC IES/SDI Unit 2011), metadata edition (Nogueras-Iso
et al. 2012)). Service conformance testing is different from data and metadata con-
formance testing. Service conformance tests are built for verifying if a service be-
haves as it is supposed to behave according to a specification. Survey papers (e.g.
Canfora and Di Penta (2009), Bozkurt et al. (2013)) show that there are a multi-
tude of tools, testing techniques and procedures that have been proposed for test-
ing any kind of Web services. In Europe, thanks to the INSPIRE directive, the
need for tools, testing techniques and procedures suitable for Web based GI ser-
vices has soared across organizations and countries recently. The most outstanding
examples are the discussion platform Persistent Test Bed (PTB) (Östman 2010)
and the testing tools developed by the Geo Data Infrastructure Germany (GDI-
DE) (Hogrebe 2012) and the European Commission’s JRC Institute for Environ-
ment and Sustainability (JRC IES/SDI Unit 2011). INSPIRE conformance testing
has become also a research area. For example, Horák et al. (2011) show how to
analyse performance, capacity and availability of view services. Guiliani et al.
(2013) perform a similar analysis for download services. Kliment et al. (2012) and
Martirano (2013) are examples of recent efforts towards a methodology for con-
formance testing of INSPIRE Network Services. The industry, represented by the
OGC, has a program named OGC Compliance and Interoperability Testing and
Evaluation (CITE) (Bermudez and Bacharach 2013) that has developed tools to
determine a product implementation of an OGC Web service standard fulfils all
mandatory elements. The CITE tools are the Compliance Test Language (CTL)
and the TEAM Engine tool. The CTL is an XML grammar for documenting and
scripting test suites that embeds XML stylesheet transformations (XSLT) and calls
to native code. The TEAM Engine is a test execution tool able to run CTL files. In
addition, the CITE program has developed test suites for OGC standards following
the ISO 19105:2000 testing methodology. Several INSPIRE conformance testing
initiatives, such as the GDI-DE Testsuite, are based on these tools and test suites.

4 Lopez-Pellicer et al.

3 BDD applied to INSPIRE conformance testing

BDD is an agile software development process in which developers, domain ex-
perts, users and stakeholders collaborate to specify in a human readable model
written in a ubiquitous language the expected behaviour of a system for ac-
ceptance testing purposes. The concept of ubiquitous language describes a lan-
guage built to be shared and used by developers, domain experts, users and stake-
holders to promote a common understanding of the business domain (Evans
2003). This concept is fundamental in BDD. The ubiquitous language used in
BDD is often referred as the Gherkin language2 and typically follows the template
for describing the behaviour of a system presented in Figure 1.
Feature [title]
 In order to [benefit]
 As [role]
 I want [feature]
 Scenario [title]
 Given [context]
 And [some more contexts]…
 When [event]
 And [some more events]…
 Then [outcome]
 And [some more outcomes]…
 Scenario [title]…
 Feature [title]…

Fig. 1. Typical Gherkin template used in BDD for depicting the behaviour of a system

Corriveau and Shi (2013) classify BDD as a model-based testing (MBT) tool.
MBT is a kind of black-box testing where tests cases are generated from a specifi-
cation, and then executed (Utting and Legeard 2010). BDD is a special case of
MBT because its ubiquitous language is not formal and the automatic derivation
of test cases from BDD models only outputs test stubs. As many other MBT tools,
BDD is supported by a set of tools able to execute the scenarios found in BDD
models. RSpec, JBehave, StoryQ, SpecFlow, Behat and Cucumber are examples
of those toolkits (Solis and Wang 2011). Compared with other MBT tools, BDD
can be considered too simple. Corriveau and Shi (2013) express this concern when
comparing BDD with other tools based on formal modelling languages such as
Spec Explorer (Veanes et al. 2008). However, the simplicity of BDD is the most
probable cause of its adoption by the industry (Lerner 2010).

2 Properly speaking, the Gherkin language is the ubiquitous language understood by the Cucum-
ber and Behat test execution tools.

Behaviour-driven development applied to the conformance testing of INSPIRE Web services 5

Network Service
IUT

«test execution tool»
Execution of ETS

against IUT

«ATS»
Gherkin spec

Production of ETS

«ATS»
Gherkin spec

«Consensus process»
Production of ATS

Gherkin features

«Consensus process»
Selection of
requirements

INSPIRE
Implementation
Requirements

«test results»
Conformance

test report

Analysis of
Results

(stakeholder POV)

Analysis of
Results

(technical POV)

INSPIRE
Stakeholders

Developers
& Testers

«ETS»

involved in

test flow

Legend:

«adaptor»
Step definitions

Fig. 2. BDD applied to INSPIRE Network Service conformance testing

The production of a test framework for INSPIRE conformance testing of net-
work services based on BDD should follow the five main steps of MBT (see Fig-
ure 2).

6 Lopez-Pellicer et al.

1. Selection of requirements.
2. Production of an abstract test suite (ATS).
3. Production of an executable test suite (ETS).
4. Execution of ETS against an instance under test (IUT).
5. Analysis of results.

The first step is the selection of requirements. It is a process based on consen-
sus where stakeholders, developers and testers agree on a subset of INSPIRE im-
plementation requirements for Web based GI services whose conformance must
be tested. The outcome of this process should be a high abstraction model of the
behaviour of the system expressed as a set of expected features. In this context, the
term feature identifies a specific desired behaviour to be tested. In MBT, this
model is known as abstract model because it must not refer to specific instances
(Utting and Legeard 2010). If the BDD specification language is the Gherkin lan-
guage, the abstract model will be represented in plain text files where each ex-
pected feature is stored in a separate file with the “.feature” filename extension.
Each file must contain a line with the keyword “Feature”3 followed by free indent-
ed text that describes a specific behaviour to be tested. The relationship between
the feature and the source requirements must be clearly documented in text to
support traceability.

The second step is the production of abstract tests from the model by consen-
sus. Since resources for testing are limited and there is an infinite number of pos-
sible tests, involved parties should agree first on some criteria to decide which and
how many abstract tests should be specified. The output of this step is an ATS.
Each abstract test is a sequence of operations or steps related to a behaviour that
put an IUT in a state where an expected outcome should happen. In the Gherkin
language, each abstract test is encoded as a scenario of the feature associated to
the behaviour that the test relates. Every scenario starts with the keyword “Scenar-
io” on a new line after a feature or scenario declaration, and is followed by a free
indented text that describes the test. Every scenario consists of an ordered list of
steps. Each step must start with one of the following keywords “Given”, “When”,
“Then”, “But” or “And”, and followed by a free text description of the step. The
purpose of the “Given” steps is to put the system in a known state, the purpose of
the “When” steps is to describe a key action and finally the purpose of “Then” is
to observe outcomes4. “But” and “And” are used to increase the readability of the
abstract test. Gherkin uses tags to group features and scenarios together.

The third step is to implement the ATS into an ETS. In BDD, this is done by
coding some adaptor code that implements each step described in the ATS in
terms of the Web service application-programming interface of the IUTs. The

3 We assume in this section that the behavior model will be written in plain English although the
Gherkin language supported by Cucumber and Behat provides keywords for more than 40 lan-
guages.
4 Popular BDD tools, such as Cucumber, do not distinguish semantically among these steps. This
behavior has practical, strong implications discussed in next sections.

Behaviour-driven development applied to the conformance testing of INSPIRE Web services 7

main advantage of this approach is the isolation of the ATS from the implementa-
tion details. The only requirement for reusing the ATS in a different test execution
environment is to code an appropriate adaptor code. For example, if the test exe-
cution environment is Java based, the Cucumber-JVM tool provides the required
Java artefacts for implementing the adaptor code; if the execution environment is
.Net based, the SpecFlow tool can be used instead (Solis and Wang 2011). In addi-
tion, BDD assumes that test execution tools will automate the execution of the
lists of steps found in the ATS. These tools will look up the implementation of a
step in the adaptor code by some matching procedure at runtime. For example, the
Cucumber tool will look for a step definition annotated with a keyword, string or
regular expression that matches the text of a Gherkin step and extract from the
matching text parameters for invoking the code. That is, in BDD, an ETS for a
specific test execution environment is a bundle composed by an ATS and an adap-
tor code for such environment.

The fourth step is to execute the ETS against an IUT with an appropriate test
execution tool. In BDD, the reports of the test executions are generated from the
ATS bundled in the ETS. That is, the reports are expressed in human readable
terms that were agreed and written by one of the final recipients of these reports:
the INSPIRE stakeholders. For example, this paper presents a Web based testing
tool able to execute ETS for OGC Web services. In this tool, users can select the
ETS to be executed and the location of the capabilities XML of the OGC Web
Service that they want to test. Moreover, each ETS is multilingual, that is, each
bundle consists of an ATS written in English, an ATS written in Spanish and a
shared adaptor code. Hence, the user can select which ATS drives the tests, and
the INSPIRE conformance report produced by the tool will be written in the corre-
sponding language.

Finally, the fifth step requires that involved parties analyse the human readable
results of the ETS executions from their point of view. For example, when an IUT
fails to pass, the main cause of the failure or error should be determined. Technical
parties may use the reports to find faults in the IUT, in the testing execution tool,
in the adaptor code, and even in the ATS. Non-technical parties may use reports to
improve the communication with technical parties while the fault is fixed, to dis-
cover faults in the ATS that technical parties may not be aware of and, perhaps, to
discover that a flawed implementation requirement is the main cause of the fail-
ure.

4 BDD and ISO 19105:2000 testing methodology

The ISO 19105:2000 testing methodology (ISO/TC 211 2000), which is based
on testing methodology for software, is the conceptual framework for conform-
ance testing in the domain of geographic information (Kresse and Fadaie 2004).
Any testing framework intended to be used in the geographic information domain
should be aligned to ISO 19105:2000 in order to detect its strengths and weak-

8 Lopez-Pellicer et al.

nesses. Table 1 maps key ISO 19105:2000 concepts to BDD concepts presented in
the above section. In general, there is a recognizable correspondence between ISO
19105:2000 and BDD concepts. The mapping also reveals that BDD does not pro-
vide a robust mechanism for defining modules and suites yet.

Table 1. Mapping between ISO 19105:2000 concepts and BDD concepts.

ISO 19105:2000 Definition BDD Definition
Abstract test case Generalized test for a partic-

ular requirement.
Scenario A sequence of operations

necessary to test for a particu-
lar feature

Abstract test
method

Method for testing imple-
mentation independent of
any particular test procedure.

Step list The sequence of steps that
define a scenario.

Abstract test mod-
ule

Set of related abstract test
cases.

Set of tagged
scenarios

Set of scenarios or features
annotated with the same tag.

Abstract test suite
(ATS)

Abstract test module speci-
fying all the requirements to
be satisfied for conformance.

Feature suite All the scenarios specifying
all the features to be satisfied
for acceptance.

Executable test
case

Specific test of an imple-
mentation to meet particular
requirements.

Scenario and
step definitions
(adaptor code)

A sequence of operations
necessary to test for a particu-
lar feature along with its
adaptor code for a particular
test execution tool.

Executable test
suite (ETS)

Set of executable test cases. Feature suite
and step defini-
tions (adaptor
code)

All the scenarios specifying
all the features to be satisfied
for acceptance along with
their adaptor code for a par-
ticular test execution tool.

The conformance assessment process in ISO 19105:2000 involves four phases:

preparation for testing, test campaign, analysis of results and conformance test
report. The first three phases of BDD applied to INSPIRE Network Service con-
formance testing (selection of requirements, production of ATS, production of
ETS) fall within the scope of the preparation for testing phase. The execution of
ETS against an IUT phase is equivalent to the test campaign phase as both are the
process of executing the ETS against an IUT and recording in a log the observed
test outcome and any other relevant information. The shared analysis of results
phase presents a subtle difference. In ISO 19105:2000, it refers to the evaluation
of the observed test outcome against the pass and fail criteria prescribed by the ab-
stract test case. This analysis may overlap in time with the test campaign. In BDD,
an automated execution tool computes during the execution of the ETS a pass or
fail test verdict automatically. Hence, the evaluation also involves confirming or
overturning the computed verdict. Finally, ISO 19105:2000 identifies a conform-
ance test report phase where the results of the conformance assessment process
are documented in a proforma conformance test report. This phase does not exist

Behaviour-driven development applied to the conformance testing of INSPIRE Web services 9

explicitly in the BDD approach because execution tools can generate automatical-
ly proforma test reports based on the ATS.

Although ISO 19105:2000 and BDD have similarities, BDD tools cannot be
considered as mature tools yet. For example, the most popular BDD tools the
Gherkin language and the Cucumber tool (Wynne and Hellesøy 2012) do not pro-
vide in its present state a complete support to the ISO 19105:2000 testing method-
ology. We can point out that the Gherkin language (Table 2) and the Cucumber
tool (Table 3) do not support conditional requirements, inconclusive verdicts, hi-
erarchical ATS, conformance levels and dependence between abstract tests meth-
ods. Such features can be emulated producing more complex ATS (pervasive use
of tags and duplicate steps) and requires a careful analysis of results in some sce-
narios (risk of wrong computed verdicts).

Table 2. Issues found in the Gherkin language

ISO 19105:2000 Description Issue Consequences
Hierarchical
abstract test
modules

Abstract test modules
may be nested in a hi-
erarchical way

Lack of semantic rela-
tionship between tags.

Tag explosion: Nested modules
can be implemented by tagging
each feature or scenario belong-
ing to these modules with tags
that identify the respective con-
tainer modules.

Conformance
clauses with
levels

A conformance level
is a special class of
conformance class in
which requirements of
a higher level contain
all the requirements of
the lower levels.

Lack of semantic rela-
tionship between tags.

Tag explosion: Lower conform-
ance levels can be implemented
by tagging each feature or sce-
nario belonging to these levels
with tags that identify the re-
spective higher conformance
levels.

Dependence
among abstract
test methods

An abstract test meth-
od may depend on the
outcome of other ab-
stract test methods.

No supported by the
language. The se-
quence of operations
is specific to each sce-
nario.

Step explosion: Increases the
complexity of the production of
ATS due to the risk of an explo-
sion of duplicate sequences of
operations.

Table 3. Issues found in the Cucumber tool

ISO 19105:2000 Description Issue Consequences
Conditional
requirements

Conformance require-
ments that shall be ob-
served if the conditions
set out in the specifica-
tion apply

The tool does not dis-
tinguish semantically
steps (e.g. Given steps
do not have guard se-
mantics).

Wrong verdicts: Check for
wrong verdicts in conditional
requirements whose guard de-
pends on an observable value
known during the execution of
the steps.

Inconclusive
verdict

Test verdict when nei-
ther a pass verdict nor a
fail verdict apply.

The tool only supports
pass or fail verdicts.

Wrong verdicts: Check for false
pass or fail verdicts.

10 Lopez-Pellicer et al.

5 Test execution tool for INSPIRE Network Services

The approach presented in the previous section has been applied to develop a Web
application able to perform an assessment on the conformity of both INSPIRE
View and Discovery services5. The application is based on two of the most popu-
lar BDD software tools: the Gherkin language and the Cucumber-JVM test execu-
tion tool. The test execution tool was patched to solve the issues detected in the
above section. Next, we describe how an end-user can interact with the applica-
tion, its architecture, and the production of ATS and ETS.

This application has a landing page where the user fills in a form with the in-
formation related to an IUT, that is, a view or download OGC Web service under
test: the online location of the capabilities XML document of an OGC WMS 1.3.0
or an OGC CSW 2.0.2 service, and the corresponding ETS. After the user sends
the form, the application returns to the browser a master view of the conformance
report labelled "in progress". In parallel, each executable test case is running or
scheduled to run on the server. The application notifies the user in real time of
each of the verdicts produced by the test cases and computes an overall verdict for
the service (Figure 3). The user can also request for a detailed view of each exe-
cutable test cases. Each executable test view displays the abstract test case, the ex-
ecution trace, the execution outcome and the test verdict (Figure 4).

Fig. 3. Conformity test report

5 This system is planned to be publicly available at IDEE, the SDI of Spain. At the moment of
the writing, the access to the development version is restricted. Readers can request the corre-
sponding author access to the service.

Behaviour-driven development applied to the conformance testing of INSPIRE Web services 11

Fig. 4. Test case report

Figure 5 presents the architecture of this Web-based multilayer application. The
presentation layer offers a landing page and master and detail views of live con-
formance test reports. The presentation layer depends on three services:

• Conformance test builder. Given the provided information related to the IUT,
this service instantiates the appropriate ETS to be executed against the selected
instance, schedules jobs to run its executable test cases (test jobs), and creates
an empty conformance test report. The unique identifier of this report is re-
turned to the user.

• Test executor. This service is invoked when a scheduler fires a test job. It in-
structs the Cucumber component to run an instantiated executable test case,
records in a log its trace, its observed outcome and its verdict (pass, fail or in-
conclusive), and notifies the verdict to the user. However, if the test case de-
pends on the finalization of other test cases, this service reschedules it.

• Conformance test report. This service provides access through unique identi-
fiers to the conformance test reports that consist in an overall verdict and the
log and the computed verdict of each test case.

As ETSs are decoupled from their adaptors, it is possible that the test executor
discovers at runtime that a step is not implemented or that a feature has no scenar-
ios. In such a case, the test case is ignored for the overall verdict and the user is
notified that the test case requires human verification. The overall verdict is com-
puted as follows:

• Pass verdict: a minimum number of tests are implemented and all return pass
verdicts.

• Fail verdict: at least one implemented test returns a fail verdict.
• Inconclusive verdict: none of the above verdicts are met.

12 Lopez-Pellicer et al.

Persistence

Presentation

Services

Components Plugins

Conformance
test report

Conformance
test builder

Test
executor

New report
form Show master report Show detail

report

Test report
model

Gherkin
pre-processor

Modified
Cucumber-JVM

Quartz
Scheduler

Adaptor code
view

ATS
view

Report log &
Verdicts

ATS
discovery

Adaptor code
discovery

Test job queue

Fig. 5. Architecture diagram of a test execution tool for INSPIRE Network Services

These services use the components exposed by the component layer. The core
components of the application are a Gherkin pre-processor that detects explicit
dependences between test cases marked with tags (i.e. test modules), a Cucumber-
JVM testing that has been modified to support conditional “Given” and “When”
clauses and adaptor code that throws inconclusive verdicts, and, as plugins, multi-
lingual ETS bundles with shared adaptor code written in Java. Logs, computed
verdicts and the test job queue are stored in the persistence layer in a relational da-
tabase.

The approach described in section 3 has been followed to produce the ETS
from the most recent technical guidance documents for the implementation of
INSPIRE view and discovery services. In a first stage, domain experts and test ex-

Behaviour-driven development applied to the conformance testing of INSPIRE Web services 13

ecution tool developers decided to select all implementation requirements and cre-
ate a feature per implementation requirement (73 for view services and 32 for dis-
covery services). Next, they started the process of the production of an ATS for
view services and an ATS for discovery services. Both ATS were written in Eng-
lish. The outcome of this process was an ATS for view services with 60 well-
defined features (7 test modules, 53 test cases with test methods), 61 scenarios and
270 steps, and an ATS for download services with 25 well-defined features (6 test
modules, 19 test cases with test methods), 23 scenarios and 158 steps. During this
procedure, it was detected that was non-feasible to devise fully automatable sce-
narios for some features (13 for view services and 7 for discovery services). They
were kept as part of the ATS for documentation purposes although they were not
automatable. The steps from both ATS were considered for the production of the
adaptor code. As many steps were duplicated or matched by the same regular ex-
pression, the 428 steps were mapped to 72 operations implemented as annotated
Java methods. Once the adaptor code was ready, each ATS was translated to
Spanish and the adaptor code was updated to match also the description of the
steps in Spanish. Finally, all the ATS produced along with the shared adaptor code
were deployed in the application. Table 4 presents a detailed summary of the test-
ing artefacts produced.

Table 4. Testing artefacts produced

Artefact View services Discovery services Total
Implementation requirements 73 32 105
Features (test modules) 7 6 13
Features (test cases with test methods) 53 19 72
Features (human verification required) 13 7 20
Scenarios 61 23 84
Steps 270 158 428
Operations (annotated Java methods) - - 72

6 Discussion

In this section, we discuss the use of BDD for conformance testing of Web-based
GI services. Software testing intrinsically faces a lot of challenges but Web ser-
vice testing faces additional issues that makes it a task of outstanding complexity.
For example, Canfora and Di Penta (2009) highlight as key issues lack of observ-
ability of service code, lack of test data, complex or not fully specified in-
put/output types, testing costs and side effects of testing. The use of a BDD-
approach does not avoid dealing with such issues. For example, 20 requirements

14 Lopez-Pellicer et al.

could not be implemented because it was no agreement on a suitable sequence of
operations for the identified scenarios, or because such sequence was perceived as
not automatable. Similar issues can be found in other conformance testing systems
for INSPIRE and, although the technical guidelines are available, it is acknowl-
edged that there are issues that have not been addressed yet (JRC IES/SDI Unit
2011).

Other aspect to analyse is if the use of a ubiquitous language helps a better un-
derstanding of the standards, the specifications and the test methods. BDD tests
suites are written in a language that have no syntactic noise and is more readable.
BDD practitioners claim this feature not only improves the understanding but also
ease the participation of stakeholders. There is little empirical evidence available
in the literature that supports this claim. Future research needs to evaluate to
which extent BDD test suites are perceived as more understandable than test suites
produced by alternative approaches.

Traceability helps to understand the test case and its execution, and thus to in-
crease the confidence of stakeholders. Traceability is the ability to relate different
items involved in testing, such as requirements and tests. BDD tools provide a
quite simple and straightforward support for traceability between tested require-
ments (features), abstract test cases (scenarios), and test implementations (adaptor
code) that interact with an IUT. Similar support can be found in CITE-based tools.
However, an effective development environment for conformance testing needs to
support not only traceability but also the debugging of test cases. Nowadays, inte-
grated development editors (IDE) offer an extensive support to run and debug
BDD specifications and the respective adaptor code by means of plugins (Chelim-
sky et al. 2010). The CTL, for example, lacks of such wide support.

7 Conclusions

We have presented the progress made in the investigation of novel procedures for
INSPIRE conformance testing of Web based GI services. The use of BDD for
conformance testing of Web based GI services is new in this domain. As other
MBT approaches, it has as advantage that authoring ATS is truly independent of
the implementation of the adaptor code. In addition, non-technical stakeholders
can participate in authoring ATS and could gain insights on conformance process.
This work also shows that BDD is partially compatible with the ISO 19105:2000
testing methodology and has desirable qualities such as traceability and readabil-
ity. Therefore, in the INSPIRE context, the adoption of BDD could facilitate a
wider participation of stakeholders in the development of ATS and ensure the ef-
fective understanding of INSPIRE implementation requirements and their conse-
quences by both technical and non-technical INSPIRE stakeholders.

Behaviour-driven development applied to the conformance testing of INSPIRE Web services 15

Acknowledgments This work has been partially supported by the Spanish Government (project
TIN2012-37826-C02-01), the National Geographic Institute (IGN) of Spain and GeoSpatiumLab
S.L.

References

Bermudez L, Bacharach S (2013) Compliance Testing Program Policies & Procedures. Open
Geospatial Consortium, Wayland

Bernard L, Kanellopoulos I, Annoni A, Smits P (2005) The European geoportal––one step to-
wards the establishment of a European Spatial Data Infrastructure. Comput Environ Urban
29:15–31. doi: 10.1016/j.compenvurbsys.2004.05.009

Bertolino A (2007) Software Testing Research: Achievements, Challenges, Dreams. Future of
Software Enginnering (FOSE'07), Minneapolis, 23-25 May 2007. doi:
10.1109/FOSE.2007.25

Bozkurt M, Harman M, Hassoun Y (2013) Testing and verification in service-oriented architec-
ture: a survey. Softw Test Verif Reliab 23:261–313. doi: 10.1002/stvr.1470

Canfora G, Di Penta M (2009) Service-Oriented Architectures Testing: A Survey. In: De Lucia
A, Ferrucci F (eds) Software Engineering. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
78–105

Chartier B (2011) Vos services WMS sont-ils INSPIREd? In: Neogeo Technologies.
http://www.neogeo-online.net/blog/archives/1331/. Accessed 3 Dec 2013

Chelimsky D, Astels D, Dennis Z, Helmkamp B, Hellesøy A, North D (2010) The RSpec Book.
The Pragmatic Bookshelf, Dallas

Corriveau J-P, Shi W (2013) On Acceptance Testing. International Conference on Software En-
gineering Research and Practice (SERP 2013), Las Vegas, 22-25 July 2013

Esbrí MÁ, Gould M, López ML (2004) Conformance Test Engines for quality assurance of
INSPIRE Services. 10th EC-GI&GIS Workshop, Warsaw, 23-25 June 2004

European Commission (2013) Guidance Documents. In: Network Services: Legislation.
http://inspire.jrc.ec.europa.eu/index.cfm/pageid/5. Accessed 4 Dec 2013

Evans E (2003) Domain-Driven Design. Addison-Wesley Professional, Boston
Giuliani G, Dubois A, Lacroix P (2013) Testing OGC Web Feature and Coverage Service per-

formance: towards an efficient access to geospatial data. J Spat Inf Sci (In press). doi:
10.5311/JOSIS.2013.7.112

Gray M, Goldfine A, Rosenthal L, Carnahan L (2010) Conformance Testing. In: Information Te-
chnology Laboratory, NIST. http://www.nist.gov/itl/ssd/is/conformancetesting.cfm. Accessed
4 Dec 2013

Hogrebe D (2012) GDI-DE Testsuite. Improving interoperability. INSPIRE Conference, Istan-
bul, 23-27 June 2012

Horák J, Ardielli J, Růžička J (2011) Performance Testing of Web Map Services. In: Nguyen N,
Trawiński B, Jung J (eds) New Challenges for Intelligent Information and Database Systems.
Springer Berlin Heidelberg, Berlin, Heidelberg, pp 257–266

ISO/TC 211 (2000) ISO 19105:2000 - Geographic information - Conformance and testing. Ge-
neva, Switzerland

JRC IES/SDI Unit (2011) INSPIRE Geoportal Metadata Validator. In: INSPIRE Geoportal.
http://inspire-geoportal.ec.europa.eu/validator2/. Accessed 4 Apr 2013

Kliment T, Tuchyňa M, Kliment M (2012) Methodology for conformance testing of spatial data
infrastructure components including an example of its implementation in Slovakia. Slovak
Journal of Civil Engineering XX:10–20. doi: 10.2478/v10189-012-0002-y

Kresse W, Fadaie K (2004) ISO Standards for Geographic Information. Springer, Berlin
Lerner RM (2010) At the forge: Cucumber. Linux Journal 2010:7.

16 Lopez-Pellicer et al.
Martirano G (2013) The eENVplus approach for data harmonization and validation. eENVplus

Workshop, INSPIRE Conference, Florence, 24 Jun 2013
Nebert D, Reed C, Wagner RM (2007) Proposal for a spatial data infrastructure standards suite:

SDI 1.0. In: Onsrud H (ed) Research and Theory in Advancing Spatial Data Infrastructure
Concepts. ESRI Press, Redlands, pp 147–159

Nogueras-Iso J, Latre MA, Béjar R, Muro-Medrano PR, Zarazaga-Soria FJ (2012) A model dri-
ven approach for the development of metadata editors, applicability to the annotation of geo-
graphic information resources. Data Knowl Eng 81-82:118–139. doi:
10.1016/j.datak.2012.09.001

North D (2007) Introducing Behaviour Driven Development. In: Dan North & Associates.
http://dannorth.net/introducing-bdd/. Accessed 25 Nov 2013

Östman A (2010) Network for testing GI services. GIS Ostrava, Ostrava, 24-27 Jan 2010
Solis C, Wang X (2011) A Study of the Characteristics of Behaviour Driven Development. 37th

EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA),
Oulu, 20 Aug-2 Sept 2011. doi: 10.1109/SEAA.2011.76

Utting M, Legeard B (2010) Practical Model-Based Testing. Morgan Kaufmann, San Francisco
Veanes M, Campbell C, Grieskamp W, Schulte W, Tillmann N, Nachmanson L (2008) Model-

Based Testing of Object-Oriented Reactive Systems with Spec Explorer. In: Hierons RM,
Bowen JP, Harman M (eds) Formal Methods and Testing. Springer Berlin Heidelberg, Berlin,
Heidelberg, pp 39–76

Wynne M, Hellesøy A (2012) The Cucumber book : behaviour-driven development for testers
and developers. The Pragmatic Bookshelf, Dallas

